创新实训2024.04.24日志:RAG技术初探

1. 什么是RAG技术

RAG is short for Retrieval Augmented Generation。结合了检索模型和生成模型的能力,以提高文本生成任务的性能。具体来说,RAG技术允许大型语言模型(Large Language Model, LLM)在生成回答时,不仅依赖于其内部知识,还能检索并利用外部数据源中的信息。

对于这个概念,我自己的理解是,大模型相当于是一个人,而RAG技术检索并利用的外部数据源就是书本、或者电子/数据资料。而RAG就是人检索并根据书本或者电子资料生成任务的能力。

比如一个人一目十行,理解能力强,可以快速地汲取知识并加以理解从而输出,就代表这个人的学习能力强,就相当于RAG技术性能优越。而另一个人阅读能力差,不容易理解新知识,就相当于RAG技术没做好,性能不行。

在这张图中,我把人类智能比作RAG技术,人类比作AI,外部知识来源比作向量数据库(一般与RAG一起使用)。RAG的实现越好,那么相当于越智能,则AI的能力越强。

2. RAG技术的Working Pipeline

首先我们要搜集插入到向量数据库 中,也即实体的文档、结构化知识、手册,读取文本内容,进行文本分割,进行向量嵌入后插入向量数据库中。

当用户请求大模型时,首先将查询向量化,随后检索向量库得到相似度高的知识,作为背景注入到prompt,随后大模型再生成回答。

3. RAG的实现

在github上,有一个RAG实现的Web应用的Demo。Langchain-Chatchat

我们同样打算以Web应用的模式构建一个能够被请求用来检索知识的向量数据库。因此先学习阅读一下这个项目的代码。

3.1. Web应用的入口:挂载Web应用路径

这一部分其实和RAG本身关系不大了,属于是网络通信方面的部分。但因为它是整个应用的入口,所以有必要探索一下。

首先在这个项目的README文件中,我们发现了这个Web应用还有个在线的接口文档。

从这个接口文档中,可以看到对于知识库(Knowledge Base) 的接口,这一部分就涉及了向量数据库。

我们可以通过在IDE中全局搜索这些接口,来找到暴露这些应用路径的地方。

可以看到,server/api.py下挂载了这些接口,我们来到这个文件一探究竟。其中不乏这样的函数:

    app.post("/knowledge_base/create_knowledge_base",
             tags=["Knowledge Base Management"],
             response_model=BaseResponse,
             summary="创建知识库"
             )(create_kb)

    app.post("/knowledge_base/delete_knowledge_base",
             tags=["Knowledge Base Management"],
             response_model=BaseResponse,
             summary="删除知识库"
             )(delete_kb)

    app.get("/knowledge_base/list_files",
            tags=["Knowledge Base Management"],
            response_model=ListResponse,
            summary="获取知识库内的文件列表"
            )(list_files)

    app.post("/knowledge_base/search_docs",
             tags=["Knowledge Base Management"],
             response_model=List[DocumentWithVSId],
             summary="搜索知识库"
             )(search_docs)

 我们点到每个函数中的参数,即create_kb这样的参数,来到了一个名叫kb_api.py的文件,其中暴露了这个函数(create_kb)。

此时我们就通过挂载Web应用路径的入口,找到了与向量数据库交互的模块。

 3.2. 与向量数据库交互

现在来看看这些与向量数据库交互的函数。

通过交互函数看知识库工程架构

首先我们关注到create_kb中的这样一部分代码:

    kb = KBServiceFactory.get_service(knowledge_base_name, vector_store_type, embed_model)
    try:
        kb.create_kb()

 光看这个名字,我们就能知道,这是一个工厂方法的设计模式。获取知识库的方式并不是直接拿到知识库的操作柄,而是先通过提供知识库服务的工厂拿到一项知识库的服务。

对于get_service函数,如下:

    @staticmethod
    def get_service(kb_name: str,
                    vector_store_type: Union[str, SupportedVSType],
                    embed_model: str = EMBEDDING_MODEL,
                    ) -> KBService:
        if isinstance(vector_store_type, str):
            vector_store_type = getattr(SupportedVSType, vector_store_type.upper())
        if SupportedVSType.FAISS == vector_store_type:
            from server.knowledge_base.kb_service.faiss_kb_service import FaissKBService
            return FaissKBService(kb_name, embed_model=embed_model)
        elif SupportedVSType.PG == vector_store_type:
            from server.knowledge_base.kb_service.pg_kb_service import PGKBService
            return PGKBService(kb_name, embed_model=embed_model)
        elif SupportedVSType.MILVUS == vector_store_type:
            from server.knowledge_base.kb_service.milvus_kb_service import MilvusKBService
            return MilvusKBService(kb_name,embed_model=embed_model)
        elif SupportedVSType.ZILLIZ == vector_store_type:
            from server.knowledge_base.kb_service.zilliz_kb_service import ZillizKBService
            return ZillizKBService(kb_name, embed_model=embed_model)
        elif SupportedVSType.DEFAULT == vector_store_type:
            from server.knowledge_base.kb_service.milvus_kb_service import MilvusKBService
            return MilvusKBService(kb_name,
                                   embed_model=embed_model)  # other milvus parameters are set in model_config.kbs_config
        elif SupportedVSType.ES == vector_store_type:
            from server.knowledge_base.kb_service.es_kb_service import ESKBService
            return ESKBService(kb_name, embed_model=embed_model)
        elif SupportedVSType.CHROMADB == vector_store_type:
            from server.knowledge_base.kb_service.chromadb_kb_service import ChromaKBService
            return ChromaKBService(kb_name, embed_model=embed_model)
        elif SupportedVSType.DEFAULT == vector_store_type:  # kb_exists of default kbservice is False, to make validation easier.
            from server.knowledge_base.kb_service.default_kb_service import DefaultKBService
            return DefaultKBService(kb_name)

那么这个是在干什么?显然,他根据向量嵌入的方式,确定要创建的数据库服务是基于哪个向量数据库的,可能是chroma,也可能是Faiss,等等。

总之,它返回了一个KBService子类的实例。而这里KBService并非是一个可实例化的类,因为它是抽象类。

在server/knowledge_base/kb_service中,我们可以看到Class Definition。

    @abstractmethod
    def do_create_kb(self):
        """
        创建知识库子类实自己逻辑
        """
        pass

在类定义中,出现了@abstractmethod注解,说明这是个抽象类。

那么其实现都在哪里呢?经过一番翻阅,在server/knowledge_base/kb_service下,包括了大量的基于不同数据库的实现类。

在翻阅代码时,我关注到了项目默认的向量数据库是faiss,因此我们可以来到faiss_kb_service中查看。

class FaissKBService(KBService):
    vs_path: str
    kb_path: str
    vector_name: str = None

 类定义中,对于KBService的继承赫然在目。

再回到通过KBServiceFactory创建KBService处:

    kb = KBServiceFactory.get_service(knowledge_base_name, vector_store_type, embed_model)
    try:
        kb.create_kb()

 我们溯源create_kb,可以发现:

    def create_kb(self):
        """
        创建知识库
        """
        if not os.path.exists(self.doc_path):
            os.makedirs(self.doc_path)
        self.do_create_kb()
        status = add_kb_to_db(self.kb_name, self.kb_info, self.vs_type(), self.embed_model)
        return status

可以看到,create_kb调用了self(实例自身)的do_create_kb()。而这就是刚才提到的抽象方法,也就是它会根据不同类对其的覆写,执行不同的逻辑。

    def do_create_kb(self):
        if not os.path.exists(self.vs_path):
            os.makedirs(self.vs_path)
        self.load_vector_store()

    def load_vector_store(self) -> ThreadSafeFaiss:
        return kb_faiss_pool.load_vector_store(kb_name=self.kb_name,
                                               vector_name=self.vector_name,
                                               embed_model=self.embed_model)

例如faiss就有自己独特的创建数据库的方式。

因此这个设计架构就明确了,是一个四层的Web-静态工厂-抽象类-实体类的架构。如下图所示:

Mapping from Abstract Working Pipeline to Code 

现在我们知道了如何获取一个向量数据库的服务。但在哪里使用它,如何使用它呢?正如先前RAG的Working Pipeline中所说,用户在请求大模型进行任务时,先通过检索向量数据库获取相似知识优化Prompt,再进行提问。那么这样一套流程,是如何映射到代码中的,我们是如何使用向量数据库提供的检索功能的?

找到RAG流程的入口

为了找到这个接口的入口,我还是先翻看了server/api.py文件,其中包括了:

    app.post("/chat/chat",
             tags=["Chat"],
             summary="与llm模型对话(通过LLMChain)",
             )(chat)

    app.post("/chat/search_engine_chat",
             tags=["Chat"],
             summary="与搜索引擎对话",
             )(search_engine_chat)

    app.post("/chat/feedback",
             tags=["Chat"],
             summary="返回llm模型对话评分",
             )(chat_feedback)

    app.post("/chat/knowledge_base_chat",
             tags=["Chat"],
             summary="与知识库对话")(knowledge_base_chat)

    app.post("/chat/file_chat",
             tags=["Knowledge Base Management"],
             summary="文件对话"
             )(file_chat)

    app.post("/chat/agent_chat",
             tags=["Chat"],
             summary="与agent对话")(agent_chat)

 一开始我以为/chat/chat这个接口是包括了RAG流程的接口,但后来我翻了翻代码,发觉并没有检索向量数据库。

随后经过一些翻阅,我找到了/chat/knowledge_base_chat这个一接口:

async def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]),
                              knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
                              top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
                              score_threshold: float = Body(
                                  SCORE_THRESHOLD,
                                  description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右",
                                  ge=0,
                                  le=2
                              ),
                              history: List[History] = Body(
                                  [],
                                  description="历史对话",
                                  examples=[[
                                      {"role": "user",
                                       "content": "我们来玩成语接龙,我先来,生龙活虎"},
                                      {"role": "assistant",
                                       "content": "虎头虎脑"}]]
                              ),
                              stream: bool = Body(False, description="流式输出"),
                              model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
                              temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
                              max_tokens: Optional[int] = Body(
                                  None,
                                  description="限制LLM生成Token数量,默认None代表模型最大值"
                              ),
                              prompt_name: str = Body(
                                  "default",
                                  description="使用的prompt模板名称(在configs/prompt_config.py中配置)"
                              ),
                              request: Request = None,
                              ):
    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    if kb is None:
        return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")

    history = [History.from_data(h) for h in history]

    async def knowledge_base_chat_iterator(
            query: str,
            top_k: int,
            history: Optional[List[History]],
            model_name: str = model_name,
            prompt_name: str = prompt_name,
    ) -> AsyncIterable[str]:
        nonlocal max_tokens
        callback = AsyncIteratorCallbackHandler()
        if isinstance(max_tokens, int) and max_tokens <= 0:
            max_tokens = None

        model = get_ChatOpenAI(
            model_name=model_name,
            temperature=temperature,
            max_tokens=max_tokens,
            callbacks=[callback],
        )
        docs = await run_in_threadpool(search_docs,
                                       query=query,
                                       knowledge_base_name=knowledge_base_name,
                                       top_k=top_k,
                                       score_threshold=score_threshold)

        # 加入reranker
        if USE_RERANKER:
            reranker_model_path = get_model_path(RERANKER_MODEL)
            reranker_model = LangchainReranker(top_n=top_k,
                                            device=embedding_device(),
                                            max_length=RERANKER_MAX_LENGTH,
                                            model_name_or_path=reranker_model_path
                                            )
            print("-------------before rerank-----------------")
            print(docs)
            docs = reranker_model.compress_documents(documents=docs,
                                                     query=query)
            print("------------after rerank------------------")
            print(docs)
        context = "\n".join([doc.page_content for doc in docs])

        if len(docs) == 0:  # 如果没有找到相关文档,使用empty模板
            prompt_template = get_prompt_template("knowledge_base_chat", "empty")
        else:
            prompt_template = get_prompt_template("knowledge_base_chat", prompt_name)
        input_msg = History(role="user", content=prompt_template).to_msg_template(False)
        chat_prompt = ChatPromptTemplate.from_messages(
            [i.to_msg_template() for i in history] + [input_msg])

        chain = LLMChain(prompt=chat_prompt, llm=model)

        # Begin a task that runs in the background.
        task = asyncio.create_task(wrap_done(
            chain.acall({"context": context, "question": query}),
            callback.done),
        )

        source_documents = []
        for inum, doc in enumerate(docs):
            filename = doc.metadata.get("source")
            parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name": filename})
            base_url = request.base_url
            url = f"{base_url}knowledge_base/download_doc?" + parameters
            text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n"""
            source_documents.append(text)

        if len(source_documents) == 0:  # 没有找到相关文档
            source_documents.append(f"<span style='color:red'>未找到相关文档,该回答为大模型自身能力解答!</span>")

        if stream:
            async for token in callback.aiter():
                # Use server-sent-events to stream the response
                yield json.dumps({"answer": token}, ensure_ascii=False)
            yield json.dumps({"docs": source_documents}, ensure_ascii=False)
        else:
            answer = ""
            async for token in callback.aiter():
                answer += token
            yield json.dumps({"answer": answer,
                              "docs": source_documents},
                             ensure_ascii=False)
        await task

    return EventSourceResponse(knowledge_base_chat_iterator(query, top_k, history,model_name,prompt_name))

他这个函数签名非常长,一堆参数,但实际有用的其实主要还是集中在query,也即用户查询上,其他的都是要调用langchain的库或者与向量数据库交互的必要参数。top k个相关向量是RAG技术的一部分,也是必要的参数。

源码解读

首先,先获取了数据库服务。(当然也可能数据库不存在)

    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    if kb is None:
        return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")

随后选择LLM模型实例:

        model = get_ChatOpenAI(
            model_name=model_name,
            temperature=temperature,
            max_tokens=max_tokens,
            callbacks=[callback],
        )

再在对应的向量数据库中检索相关文档(top k个)

        docs = await run_in_threadpool(search_docs,
                                       query=query,
                                       knowledge_base_name=knowledge_base_name,
                                       top_k=top_k,
                                       score_threshold=score_threshold)

这个异步调用中的search_docs暴露自server/knowledge_basekb_doc_api.py,如下:

def search_docs(
        query: str = Body("", description="用户输入", examples=["你好"]),
        knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
        top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
        score_threshold: float = Body(SCORE_THRESHOLD,
                                      description="知识库匹配相关度阈值,取值范围在0-1之间,"
                                                  "SCORE越小,相关度越高,"
                                                  "取到1相当于不筛选,建议设置在0.5左右",
                                      ge=0, le=1),
        file_name: str = Body("", description="文件名称,支持 sql 通配符"),
        metadata: dict = Body({}, description="根据 metadata 进行过滤,仅支持一级键"),
) -> List[DocumentWithVSId]:
    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    data = []
    if kb is not None:
        if query:
            docs = kb.search_docs(query, top_k, score_threshold)
            data = [DocumentWithVSId(**x[0].dict(), score=x[1], id=x[0].metadata.get("id")) for x in docs]
        elif file_name or metadata:
            data = kb.list_docs(file_name=file_name, metadata=metadata)
            for d in data:
                if "vector" in d.metadata:
                    del d.metadata["vector"]
    return data

首先还是获取数据库服务,随后调用服务类暴露的search_docs函数(这个很显然,对于不同向量数据库来说,肯定是具体实现不一样), 随后返回相似度在阈值内的top_k个结果。

        if len(docs) == 0:  # 如果没有找到相关文档,使用empty模板
            prompt_template = get_prompt_template("knowledge_base_chat", "empty")
        else:
            prompt_template = get_prompt_template("knowledge_base_chat", prompt_name)
        input_msg = History(role="user", content=prompt_template).to_msg_template(False)
        chat_prompt = ChatPromptTemplate.from_messages(
            [i.to_msg_template() for i in history] + [input_msg])

        chain = LLMChain(prompt=chat_prompt, llm=model)

 随后,建立prompt模板。然后根据历史会话信息建立当前对话的prompt。

之后通过LangChain提供的LLMChain,获取能够进行用户任务的中间件。

        # Begin a task that runs in the background.
        task = asyncio.create_task(wrap_done(
            chain.acall({"context": context, "question": query}),
            callback.done),
        )

随后启动一个后台的异步任务,将向量数据库中检索到的文档作为知识背景,用户的输入作为问题。

        source_documents = []
        for inum, doc in enumerate(docs):
            filename = doc.metadata.get("source")
            parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name": filename})
            base_url = request.base_url
            url = f"{base_url}knowledge_base/download_doc?" + parameters
            text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n"""
            source_documents.append(text)

        if len(source_documents) == 0:  # 没有找到相关文档
            source_documents.append(f"<span style='color:red'>未找到相关文档,该回答为大模型自身能力解答!</span>")

一般LLM回答问题,会把自己参考的文献放出来(比如说Kimi),这一部分做的就是拼接参考文献字符串。

return EventSourceResponse(knowledge_base_chat_iterator(query, top_k, history,model_name,prompt_name))

 最后返回大模型的回答。

这个过程就是RAG的Working Pipeline在代码部分中的映射。

将知识嵌入到知识库

这一部分相对而言比较直接。在server/api.py中,有这么一段:

    app.post("/knowledge_base/upload_docs",
             tags=["Knowledge Base Management"],
             response_model=BaseResponse,
             summary="上传文件到知识库,并/或进行向量化"
             )(upload_docs)

 找到对应的upload_docs,在server/knowledge_basekb_doc_api.py中。

def upload_docs(
        files: List[UploadFile] = File(..., description="上传文件,支持多文件"),
        knowledge_base_name: str = Form(..., description="知识库名称", examples=["samples"]),
        override: bool = Form(False, description="覆盖已有文件"),
        to_vector_store: bool = Form(True, description="上传文件后是否进行向量化"),
        chunk_size: int = Form(CHUNK_SIZE, description="知识库中单段文本最大长度"),
        chunk_overlap: int = Form(OVERLAP_SIZE, description="知识库中相邻文本重合长度"),
        zh_title_enhance: bool = Form(ZH_TITLE_ENHANCE, description="是否开启中文标题加强"),
        docs: Json = Form({}, description="自定义的docs,需要转为json字符串",
                          examples=[{"test.txt": [Document(page_content="custom doc")]}]),
        not_refresh_vs_cache: bool = Form(False, description="暂不保存向量库(用于FAISS)"),
) -> BaseResponse:
    """
    API接口:上传文件,并/或向量化
    """
    if not validate_kb_name(knowledge_base_name):
        return BaseResponse(code=403, msg="Don't attack me")

    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    if kb is None:
        return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")

    failed_files = {}
    file_names = list(docs.keys())

    # 先将上传的文件保存到磁盘
    for result in _save_files_in_thread(files, knowledge_base_name=knowledge_base_name, override=override):
        filename = result["data"]["file_name"]
        if result["code"] != 200:
            failed_files[filename] = result["msg"]

        if filename not in file_names:
            file_names.append(filename)

    # 对保存的文件进行向量化
    if to_vector_store:
        result = update_docs(
            knowledge_base_name=knowledge_base_name,
            file_names=file_names,
            override_custom_docs=True,
            chunk_size=chunk_size,
            chunk_overlap=chunk_overlap,
            zh_title_enhance=zh_title_enhance,
            docs=docs,
            not_refresh_vs_cache=True,
        )
        failed_files.update(result.data["failed_files"])
        if not not_refresh_vs_cache:
            kb.save_vector_store()

    return BaseResponse(code=200, msg="文件上传与向量化完成", data={"failed_files": failed_files})

这一部分最重要的还是save_vector_store函数,不过这一部分属于每种数据库自己的实现了。

我们可以看一个faiss的

    def load_vector_store(self) -> ThreadSafeFaiss:
        return kb_faiss_pool.load_vector_store(kb_name=self.kb_name,
                                               vector_name=self.vector_name,
                                               embed_model=self.embed_model)

    def load_vector_store(
            self,
            kb_name: str,
            vector_name: str = None,
            create: bool = True,
            embed_model: str = EMBEDDING_MODEL,
            embed_device: str = embedding_device(),
    ) -> ThreadSafeFaiss:
        self.atomic.acquire()
        vector_name = vector_name or embed_model
        cache = self.get((kb_name, vector_name)) # 用元组比拼接字符串好一些
        if cache is None:
            item = ThreadSafeFaiss((kb_name, vector_name), pool=self)
            self.set((kb_name, vector_name), item)
            with item.acquire(msg="初始化"):
                self.atomic.release()
                logger.info(f"loading vector store in '{kb_name}/vector_store/{vector_name}' from disk.")
                vs_path = get_vs_path(kb_name, vector_name)

                if os.path.isfile(os.path.join(vs_path, "index.faiss")):
                    embeddings = self.load_kb_embeddings(kb_name=kb_name, embed_device=embed_device, default_embed_model=embed_model)
                    vector_store = FAISS.load_local(vs_path, embeddings, normalize_L2=True,distance_strategy="METRIC_INNER_PRODUCT")
                elif create:
                    # create an empty vector store
                    if not os.path.exists(vs_path):
                        os.makedirs(vs_path)
                    vector_store = self.new_vector_store(embed_model=embed_model, embed_device=embed_device)
                    vector_store.save_local(vs_path)
                else:
                    raise RuntimeError(f"knowledge base {kb_name} not exist.")
                item.obj = vector_store
                item.finish_loading()
        else:
            self.atomic.release()
        return self.get((kb_name, vector_name))

其实这个模块是个缓存机制,也就是说每次检索都会查看是否已经有这个向量数据库的操作柄了。如果有直接返回,如果没有则加载一遍,这个加载的过程集中在:

    def get(self, key: str) -> ThreadSafeObject:
        if cache := self._cache.get(key):
            cache.wait_for_loading()
            return cache

那么他返回的是什么呢?是一个对应数据库的操作柄,定义如下:

class ThreadSafeFaiss(ThreadSafeObject):
    def __repr__(self) -> str:
        cls = type(self).__name__
        return f"<{cls}: key: {self.key}, obj: {self._obj}, docs_count: {self.docs_count()}>"

    def docs_count(self) -> int:
        return len(self._obj.docstore._dict)

    def save(self, path: str, create_path: bool = True):
        with self.acquire():
            if not os.path.isdir(path) and create_path:
                os.makedirs(path)
            ret = self._obj.save_local(path)
            logger.info(f"已将向量库 {self.key} 保存到磁盘")
        return ret

    def clear(self):
        ret = []
        with self.acquire():
            ids = list(self._obj.docstore._dict.keys())
            if ids:
                ret = self._obj.delete(ids)
                assert len(self._obj.docstore._dict) == 0
            logger.info(f"已将向量库 {self.key} 清空")
        return ret

本质上是存储向量化文档的一个对象。

4. 体验这个应用

虽然README中说了怎么用,但这里想补充下。

首先大模型你可以不下载(如果不用这个服务),但向量嵌入模型必须下载。如果你hugging-face用git clone拉不下来,上去手动下也行。

其次如果你的电脑配不了cuda环境,那么你就没办法加载运行大模型。不过你可以选择放弃大模型服务,因为还有向量知识库的服务可以用。

只需要在启动脚本里把加载运行大模型部分的代码注释掉就行(以下是完整的启动脚本):

import asyncio
import multiprocessing as mp
import os
import subprocess
import sys
from multiprocessing import Process
from datetime import datetime
from pprint import pprint
from langchain_core._api import deprecated

try:
    import numexpr

    n_cores = numexpr.utils.detect_number_of_cores()
    os.environ["NUMEXPR_MAX_THREADS"] = str(n_cores)
except:
    pass

sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from configs import (
    LOG_PATH,
    log_verbose,
    logger,
    LLM_MODELS,
    EMBEDDING_MODEL,
    TEXT_SPLITTER_NAME,
    FSCHAT_CONTROLLER,
    FSCHAT_OPENAI_API,
    FSCHAT_MODEL_WORKERS,
    API_SERVER,
    WEBUI_SERVER,
    HTTPX_DEFAULT_TIMEOUT,
)
from server.utils import (fschat_controller_address, fschat_model_worker_address,
                          fschat_openai_api_address, get_httpx_client, get_model_worker_config,
                          MakeFastAPIOffline, FastAPI, llm_device, embedding_device)
from server.knowledge_base.migrate import create_tables
import argparse
from typing import List, Dict
from configs import VERSION


@deprecated(
    since="0.3.0",
    message="模型启动功能将于 Langchain-Chatchat 0.3.x重写,支持更多模式和加速启动,0.2.x中相关功能将废弃",
    removal="0.3.0")
def create_controller_app(
        dispatch_method: str,
        log_level: str = "INFO",
) -> FastAPI:
    import fastchat.constants
    fastchat.constants.LOGDIR = LOG_PATH
    from fastchat.serve.controller import app, Controller, logger
    logger.setLevel(log_level)

    controller = Controller(dispatch_method)
    sys.modules["fastchat.serve.controller"].controller = controller

    MakeFastAPIOffline(app)
    app.title = "FastChat Controller"
    app._controller = controller
    return app


def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
    """
    kwargs包含的字段如下:
    host:
    port:
    model_names:[`model_name`]
    controller_address:
    worker_address:

    对于Langchain支持的模型:
        langchain_model:True
        不会使用fschat
    对于online_api:
        online_api:True
        worker_class: `provider`
    对于离线模型:
        model_path: `model_name_or_path`,huggingface的repo-id或本地路径
        device:`LLM_DEVICE`
    """
    import fastchat.constants
    fastchat.constants.LOGDIR = LOG_PATH
    import argparse

    parser = argparse.ArgumentParser()
    args = parser.parse_args([])

    for k, v in kwargs.items():
        setattr(args, k, v)
    if worker_class := kwargs.get("langchain_model"):  # Langchian支持的模型不用做操作
        from fastchat.serve.base_model_worker import app
        worker = ""
    # 在线模型API
    elif worker_class := kwargs.get("worker_class"):
        from fastchat.serve.base_model_worker import app

        worker = worker_class(model_names=args.model_names,
                              controller_addr=args.controller_address,
                              worker_addr=args.worker_address)
        # sys.modules["fastchat.serve.base_model_worker"].worker = worker
        sys.modules["fastchat.serve.base_model_worker"].logger.setLevel(log_level)
    # 本地模型
    else:
        from configs.model_config import VLLM_MODEL_DICT
        if kwargs["model_names"][0] in VLLM_MODEL_DICT and args.infer_turbo == "vllm":
            import fastchat.serve.vllm_worker
            from fastchat.serve.vllm_worker import VLLMWorker, app, worker_id
            from vllm import AsyncLLMEngine
            from vllm.engine.arg_utils import AsyncEngineArgs

            args.tokenizer = args.model_path
            args.tokenizer_mode = 'auto'
            args.trust_remote_code = True
            args.download_dir = None
            args.load_format = 'auto'
            args.dtype = 'auto'
            args.seed = 0
            args.worker_use_ray = False
            args.pipeline_parallel_size = 1
            args.tensor_parallel_size = 1
            args.block_size = 16
            args.swap_space = 4  # GiB
            args.gpu_memory_utilization = 0.90
            args.max_num_batched_tokens = None  # 一个批次中的最大令牌(tokens)数量,这个取决于你的显卡和大模型设置,设置太大显存会不够
            args.max_num_seqs = 256
            args.disable_log_stats = False
            args.conv_template = None
            args.limit_worker_concurrency = 5
            args.no_register = False
            args.num_gpus = 1  # vllm worker的切分是tensor并行,这里填写显卡的数量
            args.engine_use_ray = False
            args.disable_log_requests = False

            # 0.2.1 vllm后要加的参数, 但是这里不需要
            args.max_model_len = None
            args.revision = None
            args.quantization = None
            args.max_log_len = None
            args.tokenizer_revision = None

            # 0.2.2 vllm需要新加的参数
            args.max_paddings = 256

            if args.model_path:
                args.model = args.model_path
            if args.num_gpus > 1:
                args.tensor_parallel_size = args.num_gpus

            for k, v in kwargs.items():
                setattr(args, k, v)

            engine_args = AsyncEngineArgs.from_cli_args(args)
            engine = AsyncLLMEngine.from_engine_args(engine_args)

            worker = VLLMWorker(
                controller_addr=args.controller_address,
                worker_addr=args.worker_address,
                worker_id=worker_id,
                model_path=args.model_path,
                model_names=args.model_names,
                limit_worker_concurrency=args.limit_worker_concurrency,
                no_register=args.no_register,
                llm_engine=engine,
                conv_template=args.conv_template,
            )
            sys.modules["fastchat.serve.vllm_worker"].engine = engine
            sys.modules["fastchat.serve.vllm_worker"].worker = worker
            sys.modules["fastchat.serve.vllm_worker"].logger.setLevel(log_level)

        else:
            from fastchat.serve.model_worker import app, GptqConfig, AWQConfig, ModelWorker, worker_id

            args.gpus = "0"  # GPU的编号,如果有多个GPU,可以设置为"0,1,2,3"
            args.max_gpu_memory = "22GiB"
            args.num_gpus = 1  # model worker的切分是model并行,这里填写显卡的数量

            args.load_8bit = False
            args.cpu_offloading = None
            args.gptq_ckpt = None
            args.gptq_wbits = 16
            args.gptq_groupsize = -1
            args.gptq_act_order = False
            args.awq_ckpt = None
            args.awq_wbits = 16
            args.awq_groupsize = -1
            args.model_names = [""]
            args.conv_template = None
            args.limit_worker_concurrency = 5
            args.stream_interval = 2
            args.no_register = False
            args.embed_in_truncate = False
            for k, v in kwargs.items():
                setattr(args, k, v)
            if args.gpus:
                if args.num_gpus is None:
                    args.num_gpus = len(args.gpus.split(','))
                if len(args.gpus.split(",")) < args.num_gpus:
                    raise ValueError(
                        f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
                    )
                os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
            gptq_config = GptqConfig(
                ckpt=args.gptq_ckpt or args.model_path,
                wbits=args.gptq_wbits,
                groupsize=args.gptq_groupsize,
                act_order=args.gptq_act_order,
            )
            awq_config = AWQConfig(
                ckpt=args.awq_ckpt or args.model_path,
                wbits=args.awq_wbits,
                groupsize=args.awq_groupsize,
            )

            worker = ModelWorker(
                controller_addr=args.controller_address,
                worker_addr=args.worker_address,
                worker_id=worker_id,
                model_path=args.model_path,
                model_names=args.model_names,
                limit_worker_concurrency=args.limit_worker_concurrency,
                no_register=args.no_register,
                device=args.device,
                num_gpus=args.num_gpus,
                max_gpu_memory=args.max_gpu_memory,
                load_8bit=args.load_8bit,
                cpu_offloading=args.cpu_offloading,
                gptq_config=gptq_config,
                awq_config=awq_config,
                stream_interval=args.stream_interval,
                conv_template=args.conv_template,
                embed_in_truncate=args.embed_in_truncate,
            )
            sys.modules["fastchat.serve.model_worker"].args = args
            sys.modules["fastchat.serve.model_worker"].gptq_config = gptq_config
            # sys.modules["fastchat.serve.model_worker"].worker = worker
            sys.modules["fastchat.serve.model_worker"].logger.setLevel(log_level)

    MakeFastAPIOffline(app)
    app.title = f"FastChat LLM Server ({args.model_names[0]})"
    app._worker = worker
    return app


def create_openai_api_app(
        controller_address: str,
        api_keys: List = [],
        log_level: str = "INFO",
) -> FastAPI:
    import fastchat.constants
    fastchat.constants.LOGDIR = LOG_PATH
    from fastchat.serve.openai_api_server import app, CORSMiddleware, app_settings
    from fastchat.utils import build_logger
    logger = build_logger("openai_api", "openai_api.log")
    logger.setLevel(log_level)

    app.add_middleware(
        CORSMiddleware,
        allow_credentials=True,
        allow_origins=["*"],
        allow_methods=["*"],
        allow_headers=["*"],
    )

    sys.modules["fastchat.serve.openai_api_server"].logger = logger
    app_settings.controller_address = controller_address
    app_settings.api_keys = api_keys

    MakeFastAPIOffline(app)
    app.title = "FastChat OpeanAI API Server"
    return app


def _set_app_event(app: FastAPI, started_event: mp.Event = None):
    @app.on_event("startup")
    async def on_startup():
        if started_event is not None:
            started_event.set()


def run_controller(log_level: str = "INFO", started_event: mp.Event = None):
    import uvicorn
    import httpx
    from fastapi import Body
    import time
    import sys
    from server.utils import set_httpx_config
    set_httpx_config()

    app = create_controller_app(
        dispatch_method=FSCHAT_CONTROLLER.get("dispatch_method"),
        log_level=log_level,
    )
    _set_app_event(app, started_event)

    # add interface to release and load model worker
    @app.post("/release_worker")
    def release_worker(
            model_name: str = Body(..., description="要释放模型的名称", samples=["chatglm-6b"]),
            # worker_address: str = Body(None, description="要释放模型的地址,与名称二选一", samples=[FSCHAT_CONTROLLER_address()]),
            new_model_name: str = Body(None, description="释放后加载该模型"),
            keep_origin: bool = Body(False, description="不释放原模型,加载新模型")
    ) -> Dict:
        available_models = app._controller.list_models()
        if new_model_name in available_models:
            msg = f"要切换的LLM模型 {new_model_name} 已经存在"
            logger.info(msg)
            return {"code": 500, "msg": msg}

        if new_model_name:
            logger.info(f"开始切换LLM模型:从 {model_name} 到 {new_model_name}")
        else:
            logger.info(f"即将停止LLM模型: {model_name}")

        if model_name not in available_models:
            msg = f"the model {model_name} is not available"
            logger.error(msg)
            return {"code": 500, "msg": msg}

        worker_address = app._controller.get_worker_address(model_name)
        if not worker_address:
            msg = f"can not find model_worker address for {model_name}"
            logger.error(msg)
            return {"code": 500, "msg": msg}

        with get_httpx_client() as client:
            r = client.post(worker_address + "/release",
                            json={"new_model_name": new_model_name, "keep_origin": keep_origin})
            if r.status_code != 200:
                msg = f"failed to release model: {model_name}"
                logger.error(msg)
                return {"code": 500, "msg": msg}

        if new_model_name:
            timer = HTTPX_DEFAULT_TIMEOUT  # wait for new model_worker register
            while timer > 0:
                models = app._controller.list_models()
                if new_model_name in models:
                    break
                time.sleep(1)
                timer -= 1
            if timer > 0:
                msg = f"sucess change model from {model_name} to {new_model_name}"
                logger.info(msg)
                return {"code": 200, "msg": msg}
            else:
                msg = f"failed change model from {model_name} to {new_model_name}"
                logger.error(msg)
                return {"code": 500, "msg": msg}
        else:
            msg = f"sucess to release model: {model_name}"
            logger.info(msg)
            return {"code": 200, "msg": msg}

    host = FSCHAT_CONTROLLER["host"]
    port = FSCHAT_CONTROLLER["port"]

    if log_level == "ERROR":
        sys.stdout = sys.__stdout__
        sys.stderr = sys.__stderr__

    uvicorn.run(app, host=host, port=port, log_level=log_level.lower())


def run_model_worker(
        model_name: str = LLM_MODELS[0],
        controller_address: str = "",
        log_level: str = "INFO",
        q: mp.Queue = None,
        started_event: mp.Event = None,
):
    import uvicorn
    from fastapi import Body
    import sys
    from server.utils import set_httpx_config
    set_httpx_config()

    kwargs = get_model_worker_config(model_name)
    host = kwargs.pop("host")
    port = kwargs.pop("port")
    kwargs["model_names"] = [model_name]
    kwargs["controller_address"] = controller_address or fschat_controller_address()
    kwargs["worker_address"] = fschat_model_worker_address(model_name)
    model_path = kwargs.get("model_path", "")
    kwargs["model_path"] = model_path

    app = create_model_worker_app(log_level=log_level, **kwargs)
    _set_app_event(app, started_event)
    if log_level == "ERROR":
        sys.stdout = sys.__stdout__
        sys.stderr = sys.__stderr__

    # add interface to release and load model
    @app.post("/release")
    def release_model(
            new_model_name: str = Body(None, description="释放后加载该模型"),
            keep_origin: bool = Body(False, description="不释放原模型,加载新模型")
    ) -> Dict:
        if keep_origin:
            if new_model_name:
                q.put([model_name, "start", new_model_name])
        else:
            if new_model_name:
                q.put([model_name, "replace", new_model_name])
            else:
                q.put([model_name, "stop", None])
        return {"code": 200, "msg": "done"}

    uvicorn.run(app, host=host, port=port, log_level=log_level.lower())


def run_openai_api(log_level: str = "INFO", started_event: mp.Event = None):
    import uvicorn
    import sys
    from server.utils import set_httpx_config
    set_httpx_config()

    controller_addr = fschat_controller_address()
    app = create_openai_api_app(controller_addr, log_level=log_level)
    _set_app_event(app, started_event)

    host = FSCHAT_OPENAI_API["host"]
    port = FSCHAT_OPENAI_API["port"]
    if log_level == "ERROR":
        sys.stdout = sys.__stdout__
        sys.stderr = sys.__stderr__
    uvicorn.run(app, host=host, port=port)


def run_api_server(started_event: mp.Event = None, run_mode: str = None):
    from server.api import create_app
    import uvicorn
    from server.utils import set_httpx_config
    set_httpx_config()

    app = create_app(run_mode=run_mode)
    _set_app_event(app, started_event)

    host = API_SERVER["host"]
    port = API_SERVER["port"]

    uvicorn.run(app, host=host, port=port)


def run_webui(started_event: mp.Event = None, run_mode: str = None):
    from server.utils import set_httpx_config
    set_httpx_config()

    host = WEBUI_SERVER["host"]
    port = WEBUI_SERVER["port"]

    cmd = ["streamlit", "run", "webui.py",
           "--server.address", host,
           "--server.port", str(port),
           "--theme.base", "light",
           "--theme.primaryColor", "#165dff",
           "--theme.secondaryBackgroundColor", "#f5f5f5",
           "--theme.textColor", "#000000",
           ]
    if run_mode == "lite":
        cmd += [
            "--",
            "lite",
        ]
    p = subprocess.Popen(cmd)
    started_event.set()
    p.wait()


def parse_args() -> argparse.ArgumentParser:
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-a",
        "--all-webui",
        action="store_true",
        help="run fastchat's controller/openai_api/model_worker servers, run api.py and webui.py",
        dest="all_webui",
    )
    parser.add_argument(
        "--all-api",
        action="store_true",
        help="run fastchat's controller/openai_api/model_worker servers, run api.py",
        dest="all_api",
    )
    parser.add_argument(
        "--llm-api",
        action="store_true",
        help="run fastchat's controller/openai_api/model_worker servers",
        dest="llm_api",
    )
    parser.add_argument(
        "-o",
        "--openai-api",
        action="store_true",
        help="run fastchat's controller/openai_api servers",
        dest="openai_api",
    )
    parser.add_argument(
        "-m",
        "--model-worker",
        action="store_true",
        help="run fastchat's model_worker server with specified model name. "
             "specify --model-name if not using default LLM_MODELS",
        dest="model_worker",
    )
    parser.add_argument(
        "-n",
        "--model-name",
        type=str,
        nargs="+",
        default=LLM_MODELS,
        help="specify model name for model worker. "
             "add addition names with space seperated to start multiple model workers.",
        dest="model_name",
    )
    parser.add_argument(
        "-c",
        "--controller",
        type=str,
        help="specify controller address the worker is registered to. default is FSCHAT_CONTROLLER",
        dest="controller_address",
    )
    parser.add_argument(
        "--api",
        action="store_true",
        help="run api.py server",
        dest="api",
    )
    parser.add_argument(
        "-p",
        "--api-worker",
        action="store_true",
        help="run online model api such as zhipuai",
        dest="api_worker",
    )
    parser.add_argument(
        "-w",
        "--webui",
        action="store_true",
        help="run webui.py server",
        dest="webui",
    )
    parser.add_argument(
        "-q",
        "--quiet",
        action="store_true",
        help="减少fastchat服务log信息",
        dest="quiet",
    )
    parser.add_argument(
        "-i",
        "--lite",
        action="store_true",
        help="以Lite模式运行:仅支持在线API的LLM对话、搜索引擎对话",
        dest="lite",
    )
    args = parser.parse_args()
    return args, parser


def dump_server_info(after_start=False, args=None):
    import platform
    import langchain
    import fastchat
    from server.utils import api_address, webui_address

    print("\n")
    print("=" * 30 + "Langchain-Chatchat Configuration" + "=" * 30)
    print(f"操作系统:{platform.platform()}.")
    print(f"python版本:{sys.version}")
    print(f"项目版本:{VERSION}")
    print(f"langchain版本:{langchain.__version__}. fastchat版本:{fastchat.__version__}")
    print("\n")

    models = LLM_MODELS
    if args and args.model_name:
        models = args.model_name

    print(f"当前使用的分词器:{TEXT_SPLITTER_NAME}")
    print(f"当前启动的LLM模型:{models} @ {llm_device()}")

    for model in models:
        pprint(get_model_worker_config(model))
    print(f"当前Embbedings模型: {EMBEDDING_MODEL} @ {embedding_device()}")

    if after_start:
        print("\n")
        print(f"服务端运行信息:")
        if args.openai_api:
            print(f"    OpenAI API Server: {fschat_openai_api_address()}")
        if args.api:
            print(f"    Chatchat  API  Server: {api_address()}")
        if args.webui:
            print(f"    Chatchat WEBUI Server: {webui_address()}")
    print("=" * 30 + "Langchain-Chatchat Configuration" + "=" * 30)
    print("\n")


async def start_main_server():
    import time
    import signal

    def handler(signalname):
        """
        Python 3.9 has `signal.strsignal(signalnum)` so this closure would not be needed.
        Also, 3.8 includes `signal.valid_signals()` that can be used to create a mapping for the same purpose.
        """

        def f(signal_received, frame):
            raise KeyboardInterrupt(f"{signalname} received")

        return f

    # This will be inherited by the child process if it is forked (not spawned)
    signal.signal(signal.SIGINT, handler("SIGINT"))
    signal.signal(signal.SIGTERM, handler("SIGTERM"))

    mp.set_start_method("spawn")
    manager = mp.Manager()
    run_mode = None

    queue = manager.Queue()
    args, parser = parse_args()

    if args.all_webui:
        args.openai_api = True
        args.model_worker = True
        args.api = True
        args.api_worker = True
        args.webui = True

    elif args.all_api:
        args.openai_api = True
        args.model_worker = True
        args.api = True
        args.api_worker = True
        args.webui = False

    elif args.llm_api:
        args.openai_api = True
        args.model_worker = True
        args.api_worker = True
        args.api = False
        args.webui = False

    if args.lite:
        args.model_worker = False
        run_mode = "lite"

    dump_server_info(args=args)

    if len(sys.argv) > 1:
        logger.info(f"正在启动服务:")
        logger.info(f"如需查看 llm_api 日志,请前往 {LOG_PATH}")

    processes = {"online_api": {}, "model_worker": {}}

    def process_count():
        return len(processes) + len(processes["online_api"]) + len(processes["model_worker"]) - 2

    if args.quiet or not log_verbose:
        log_level = "ERROR"
    else:
        log_level = "INFO"

    controller_started = manager.Event()
    if args.openai_api:
        process = Process(
            target=run_controller,
            name=f"controller",
            kwargs=dict(log_level=log_level, started_event=controller_started),
            daemon=True,
        )
        processes["controller"] = process

        process = Process(
            target=run_openai_api,
            name=f"openai_api",
            daemon=True,
        )
        processes["openai_api"] = process

    # model_worker_started = []
    # if args.model_worker:
    #     for model_name in args.model_name:
    #         config = get_model_worker_config(model_name)
    #         if not config.get("online_api"):
    #             e = manager.Event()
    #             model_worker_started.append(e)
    #             process = Process(
    #                 target=run_model_worker,
    #                 name=f"model_worker - {model_name}",
    #                 kwargs=dict(model_name=model_name,
    #                             controller_address=args.controller_address,
    #                             log_level=log_level,
    #                             q=queue,
    #                             started_event=e),
    #                 daemon=True,
    #             )
    #             processes["model_worker"][model_name] = process
    #
    # if args.api_worker:
    #     for model_name in args.model_name:
    #         config = get_model_worker_config(model_name)
    #         if (config.get("online_api")
    #                 and config.get("worker_class")
    #                 and model_name in FSCHAT_MODEL_WORKERS):
    #             e = manager.Event()
    #             model_worker_started.append(e)
    #             process = Process(
    #                 target=run_model_worker,
    #                 name=f"api_worker - {model_name}",
    #                 kwargs=dict(model_name=model_name,
    #                             controller_address=args.controller_address,
    #                             log_level=log_level,
    #                             q=queue,
    #                             started_event=e),
    #                 daemon=True,
    #             )
    #             processes["online_api"][model_name] = process

    api_started = manager.Event()
    if args.api:
        process = Process(
            target=run_api_server,
            name=f"API Server",
            kwargs=dict(started_event=api_started, run_mode=run_mode),
            daemon=True,
        )
        processes["api"] = process

    webui_started = manager.Event()
    if args.webui:
        process = Process(
            target=run_webui,
            name=f"WEBUI Server",
            kwargs=dict(started_event=webui_started, run_mode=run_mode),
            daemon=True,
        )
        processes["webui"] = process

    if process_count() == 0:
        parser.print_help()
    else:
        try:
            # 保证任务收到SIGINT后,能够正常退出
            if p := processes.get("controller"):
                p.start()
                p.name = f"{p.name} ({p.pid})"
                controller_started.wait()  # 等待controller启动完成

            if p := processes.get("openai_api"):
                p.start()
                p.name = f"{p.name} ({p.pid})"

            for n, p in processes.get("model_worker", {}).items():
                p.start()
                p.name = f"{p.name} ({p.pid})"

            for n, p in processes.get("online_api", []).items():
                p.start()
                p.name = f"{p.name} ({p.pid})"

            # for e in model_worker_started:
            #     e.wait()

            if p := processes.get("api"):
                p.start()
                p.name = f"{p.name} ({p.pid})"
                api_started.wait()

            if p := processes.get("webui"):
                p.start()
                p.name = f"{p.name} ({p.pid})"
                webui_started.wait()

            dump_server_info(after_start=True, args=args)

            while True:
                cmd = queue.get()
                e = manager.Event()
                if isinstance(cmd, list):
                    model_name, cmd, new_model_name = cmd
                    if cmd == "start":  # 运行新模型
                        logger.info(f"准备启动新模型进程:{new_model_name}")
                        process = Process(
                            target=run_model_worker,
                            name=f"model_worker - {new_model_name}",
                            kwargs=dict(model_name=new_model_name,
                                        controller_address=args.controller_address,
                                        log_level=log_level,
                                        q=queue,
                                        started_event=e),
                            daemon=True,
                        )
                        process.start()
                        process.name = f"{process.name} ({process.pid})"
                        processes["model_worker"][new_model_name] = process
                        e.wait()
                        logger.info(f"成功启动新模型进程:{new_model_name}")
                    elif cmd == "stop":
                        if process := processes["model_worker"].get(model_name):
                            time.sleep(1)
                            process.terminate()
                            process.join()
                            logger.info(f"停止模型进程:{model_name}")
                        else:
                            logger.error(f"未找到模型进程:{model_name}")
                    elif cmd == "replace":
                        if process := processes["model_worker"].pop(model_name, None):
                            logger.info(f"停止模型进程:{model_name}")
                            start_time = datetime.now()
                            time.sleep(1)
                            process.terminate()
                            process.join()
                            process = Process(
                                target=run_model_worker,
                                name=f"model_worker - {new_model_name}",
                                kwargs=dict(model_name=new_model_name,
                                            controller_address=args.controller_address,
                                            log_level=log_level,
                                            q=queue,
                                            started_event=e),
                                daemon=True,
                            )
                            process.start()
                            process.name = f"{process.name} ({process.pid})"
                            processes["model_worker"][new_model_name] = process
                            e.wait()
                            timing = datetime.now() - start_time
                            logger.info(f"成功启动新模型进程:{new_model_name}。用时:{timing}。")
                        else:
                            logger.error(f"未找到模型进程:{model_name}")

            # for process in processes.get("model_worker", {}).values():
            #     process.join()
            # for process in processes.get("online_api", {}).values():
            #     process.join()

            # for name, process in processes.items():
            #     if name not in ["model_worker", "online_api"]:
            #         if isinstance(p, dict):
            #             for work_process in p.values():
            #                 work_process.join()
            #         else:
            #             process.join()
        except Exception as e:
            logger.error(e)
            logger.warning("Caught KeyboardInterrupt! Setting stop event...")
        finally:

            for p in processes.values():
                logger.warning("Sending SIGKILL to %s", p)
                # Queues and other inter-process communication primitives can break when
                # process is killed, but we don't care here

                if isinstance(p, dict):
                    for process in p.values():
                        process.kill()
                else:
                    p.kill()

            for p in processes.values():
                logger.info("Process status: %s", p)


if __name__ == "__main__":
    create_tables()
    if sys.version_info < (3, 10):
        loop = asyncio.get_event_loop()
    else:
        try:
            loop = asyncio.get_running_loop()
        except RuntimeError:
            loop = asyncio.new_event_loop()

        asyncio.set_event_loop(loop)

    loop.run_until_complete(start_main_server())

# 服务启动后接口调用示例:
# import openai
# openai.api_key = "EMPTY" # Not support yet
# openai.api_base = "http://localhost:8888/v1"

# model = "chatglm3-6b"

# # create a chat completion
# completion = openai.ChatCompletion.create(
#   model=model,
#   messages=[{"role": "user", "content": "Hello! What is your name?"}]
# )
# # print the completion
# print(completion.choices[0].message.content)

随后启动起来长这样:

当然大模型对话还是不能用的,因为根本没加载运行大模型。不过亲测向量知识库可以用。我就往知识库里传了个tmp.txt文件。

Web服务这边也是显示向量嵌入正常。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值