先配置pom文件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.czxy</groupId>
<artifactId>sadas</artifactId>
<version>1.0-SNAPSHOT</version>
<repositories>
<repository>
<id>cloudera</id>
<url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.apache.Hadoop</groupId>
<artifactId>Hadoop-client</artifactId>
<version>2.6.0-mr1-cdh5.14.0</version>
</dependency>
<dependency>
<groupId>org.apache.Hadoop</groupId>
<artifactId>Hadoop-common</artifactId>
<version>2.6.0-cdh5.14.0</version>
</dependency>
<dependency>
<groupId>org.apache.Hadoop</groupId>
<artifactId>Hadoop-hdfs</artifactId>
<version>2.6.0-cdh5.14.0</version>
</dependency>
<dependency>
<groupId>org.apache.Hadoop</groupId>
<artifactId>Hadoop-mapreduce-client-core</artifactId>
<version>2.6.0-cdh5.14.0</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.testng</groupId>
<artifactId>testng</artifactId>
<version>RELEASE</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.0</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<minimizeJar>true</minimizeJar>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
编写三个java代码
WordCountMap
package com.czxy;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class WordCountMap extends Mapper<LongWritable,Text,Text,LongWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1. 将value 从test转为string
String datas = value.toString();
//2. 切分数据
String[] s = datas.split(",");
//3. 遍历输出
for (String data : s) {
//输出
context.write(new Text(data),new LongWritable(1));
}
}
}
WordCountReduce
package com.czxy;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class WordCountReduce extends Reducer<Text, LongWritable,Text,LongWritable> {
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
long sum = 0;
for (LongWritable value : values) {
sum += value.get();
}
context.write(key,new LongWritable(sum));
}
}
WordCountDriver
package com.czxy;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class WordCountDriver extends Configured implements Tool {
//执行job
public static void main(String[] args) throws Exception {
ToolRunner.run(new WordCountDriver(), args);
}
@Override
public int run(String[] args) throws Exception {
//将已经编写好的map reduce 添加到计算框架
//1. 实例一个 job
Job job = Job.getInstance(new Configuration(), "WordCount34");
//2. 使用 job 设置读取数据 (数据类型 ,数据路径)
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.addInputPath(job, new Path("C:\\a.txt"));
//3. 使用 job 设置map 类(map输入的类型)
job.setMapperClass(WordCountMap.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//4. 使用 job 设置reduce 类 (输入的类型)
job.setReducerClass(WordCountReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
//5. 使用 job 设置数据输出的路径
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("C:\\BBB2"));
//6.返回代码执行状态编号
return job.waitForCompletion(true) ? 0 : 1;
}
}

本文详细介绍了一个基于Hadoop的WordCount实现过程,包括Maven配置、MapReduce编程及作业执行。通过具体代码示例,展示了如何进行文本的单词计数。
1239

被折叠的 条评论
为什么被折叠?



