特殊SQL语句及优化原则【D】

本文介绍了针对Oracle数据库进行SQL优化的方法,包括调整WHERE子句中的连接顺序、使用TRUNCATE替代DELETE、频繁使用COMMIT、用EXISTS替代IN等,旨在提高查询效率。
3. 据抽取和上载时的sql优化:
(1). Where 子句中的连接顺序:
oracle采用自下而上的顺序解析where子句,根据这个原理,表之间的连接必须写在其他where条件之前,那些可以过滤掉大量记录的条件必须写在where子句的末尾。如:
低效:select * from emp e where sal>5000 and job = ‘manager’ and 25<(select count (*) from emp where mgr=e.empno);
高效:select * from emp e where 25<(select count(*) from emp where mgr=e.empno) and sal>5000 and job=’manager’;
(2). 删除全表时,用truncate 替代 delete,同时注意truncate只能在删除全表时适用,因为truncate是ddl而不是dml。
(3). 尽量多使用commit
只要有可能就在程序中对每个delete,insert,update操作尽量多使用commit,这样系统性能会因为commit所释放的资源而大大提高。
(4). 用exists替代in ,可以提高查询的效率。
(5). 用not exists 替代 not in
(6). 优化group by
提高group by语句的效率,可以将不需要的记录在group by之前过滤掉。如:
低效:select job, avg(sal) from emp group by job having job = ‘president’ or job=’manager’;
高效: select job, avg(sal) from emp having job=’president’ or job=’manager’ group by job;
(7). 有条件的使用union-all 替代 union:这样做排序就不必要了,效率会提高3到5倍。
(8). 分离表和索引
总是将你的表和索引建立在不同的表空间内,决不要将不属于oracle内部系统的对象存放到system表空间内。同时确保数据表空间和索引表空间置于不同的硬盘控制卡控制的硬盘上。
基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值