my analysis:
n! permutations.
i times comparation for a permutation.
i=1: 1*sikma(k=n to 2)* C(k-1,1)*(n-i-1)! comparations
...
i=t: t*sikma(k=n to i+1)*C(k-1,t)*(n-t-1)!
...
i=n-1: (n-1)*sikma(k=n to n)*C(k-1,n-1)*(n-(n-1)-1)!=n-1
so the answer is:
sikma(t=1 to n-1)[ (t*sikma(k=n to i+1)*C(k-1,t)*(n-t-1)! ) ] / n!
<script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"> </script>
n! permutations.
i times comparation for a permutation.
i=1: 1*sikma(k=n to 2)* C(k-1,1)*(n-i-1)! comparations
...
i=t: t*sikma(k=n to i+1)*C(k-1,t)*(n-t-1)!
...
i=n-1: (n-1)*sikma(k=n to n)*C(k-1,n-1)*(n-(n-1)-1)!=n-1
so the answer is:
sikma(t=1 to n-1)[ (t*sikma(k=n to i+1)*C(k-1,t)*(n-t-1)! ) ] / n!
<script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"> </script>
本文详细解析了在进行排列操作时所需的比较次数,通过数学公式展现了不同排列下比较次数的变化规律。
4535

被折叠的 条评论
为什么被折叠?



