
模式识别
lwjaiyjk3
鸟欲高飞先振翅,人求上进先读书
展开
-
目标检测的图像特征提取之(三)Haar特征
1、Haar-like特征 Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征。Haar特征分为三类:边缘特征、线性特征、中心特征和对角线特征,组合成特征模板。特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和。Haar特征值反映了图像的灰度变化情况。例转载 2013-05-29 16:03:55 · 1281 阅读 · 0 评论 -
目标检测的图像特征提取之(二)LBP特征
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen,和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征; 1、LBP特征的描述 原始的LBP算子定义为在3*3的转载 2013-05-29 15:45:14 · 1636 阅读 · 0 评论