POJ2635----The Embarrassed Cryptographer

The Embarrassed Cryptographer
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 13032 Accepted: 3515

Description


题意:给定一个数<10的100次幂,求在n范围内是否存在该数的质因子;

思路:同余模的高进制;

The young and very promising cryptographer Odd Even has implemented the security module of a large system with thousands of users, which is now in use in his company. The cryptographic keys are created from the product of two primes, and are believed to be secure because there is no known method for factoring such a product effectively.
What Odd Even did not think of, was that both factors in a key should be large, not just their product. It is now possible that some of the users of the system have weak keys. In a desperate attempt not to be fired, Odd Even secretly goes through all the users keys, to check if they are strong enough. He uses his very poweful Atari, and is especially careful when checking his boss' key.

Input

The input consists of no more than 20 test cases. Each test case is a line with the integers 4 <= K <= 10 100 and 2 <= L <= 10 6. K is the key itself, a product of two primes. L is the wanted minimum size of the factors in the key. The input set is terminated by a case where K = 0 and L = 0.

Output

For each number K, if one of its factors are strictly less than the required L, your program should output "BAD p", where p is the smallest factor in K. Otherwise, it should output "GOOD". Cases should be separated by a line-break.

Sample Input

143 10
143 20
667 20
667 30
2573 30
2573 40
0 0

Sample Output

GOOD
BAD 11
GOOD
BAD 23
GOOD
BAD 31

Source

Nordic 2005

10000进制版;

Source Code
Problem: 2635		User: 14110103069
Memory: 2268K		Time: 860MS
Language: G++		Result: Accepted

    Source Code

    #include <iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #include<queue>
    #include<stack>
    #include<set>
    #include<map>
    #include<cctype>
    #define LL long long
    #define INF 0x3f3f3f3f
    using namespace std;
    const int N = 1e6+1e4;
    LL prime[N>>2];
    bool flag[N];
    int k;
    char s[110];
    LL a[110];
    void getprime()
    {
        k=0;
        memset(flag,0,sizeof(flag));
        int i,j;
        for(i=2;i<N;i++)
        {
            if(!flag[i])
            {
                prime[++k]=i;
            }
            for(j=1;j<=k&&prime[j]*i<N;j++)
            {
                flag[prime[j]*i]=1;
                if(i%prime[j]==0)
                    break;
            }
        }
    }
    int main()
    {
         getprime();
         int n;
         while(~scanf("%s%d",s,&n))
         {
             if(s[0]=='0'&&n==0)
                break;
             int len=strlen(s);
             int i=0;
             int l=0,j;
             LL tmp;
    bool first=1;
             while(i<len)
             {
                 j=4;
                 tmp=0;
                 if(first)
                 {
                     j=len%4;
                 }
                 if(j==0)
                    j=4;
                     while(i<len&&j>0)
                     {
                         tmp=tmp*10+s[i]-'0';
                         i++;j--;
                     }
                     first=0;
                 a[++l]=tmp;
             }
             first =1;
            for( i=1;prime[i]<n;i++)
            {
                tmp=0;
                for( j=1;j<=l;j++)
                {
                    tmp=(tmp*10000+a[j])%prime[i];
                }
                if(tmp==0)
                {
                    first=0;
                    break;
                }
            }
            if(first)
                printf("GOOD\n");
            else
                printf("BAD %lld\n",prime[i]);
         }
        return 0;
    }


100000版

Source Code
Problem: 2635		User: 14110103069
Memory: 2268K		Time: 688MS
Language: G++		Result: Accepted

    Source Code

    #include <iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #include<queue>
    #include<stack>
    #include<set>
    #include<map>
    #include<cctype>
    #define LL long long
    #define INF 0x3f3f3f3f
    using namespace std;
    const int N = 1e6+1e4;
    LL prime[N>>2];
    bool flag[N];
    int k;
    char s[110];
    LL a[110];
    void getprime()
    {
        k=0;
        memset(flag,0,sizeof(flag));
        int i,j;
        for(i=2;i<N;i++)
        {
            if(!flag[i])
            {
                prime[++k]=i;
            }
            for(j=1;j<=k&&prime[j]*i<N;j++)
            {
                flag[prime[j]*i]=1;
                if(i%prime[j]==0)
                    break;
            }
        }
    }
    int main()
    {
         getprime();
         int n;
         while(~scanf("%s%d",s,&n))
         {
             if(s[0]=='0'&&n==0)
                break;
             int len=strlen(s);
             int i=0;
             int l=0,j;
             LL tmp;
            bool first=1;
             while(i<len)
             {
                 j=5;
                 tmp=0;
                 if(first)
                 {
                     j=len%5;
                     first=0;
                 }
                 if(j==0)
                    j=5;
                     while(i<len&&j>0)
                     {
                         tmp=tmp*10+s[i]-'0';
                         i++;j--;
                     }

                 a[++l]=tmp;
             }
             first =1;
            for( i=1;prime[i]<n;i++)
            {
                tmp=0;
                for( j=1;j<=l;j++)
                {
                    tmp=(tmp*100000+a[j])%prime[i];
                }
                if(tmp==0)
                {
                    first=0;
                    break;
                }
            }
            if(first)
                printf("GOOD\n");
            else
                printf("BAD %lld\n",prime[i]);
         }
        return 0;
    }

  1000000版

Source Code
Problem: 2635		User: 14110103069
Memory: 2268K		Time: 610MS
Language: G++		Result: Accepted

    Source Code

    #include <iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #include<queue>
    #include<stack>
    #include<set>
    #include<map>
    #include<cctype>
    #define LL long long
    #define INF 0x3f3f3f3f
    using namespace std;
    const int N = 1e6+1e4;
    LL prime[N>>2];
    bool flag[N];
    int k;
    char s[110];
    LL a[110];
    void getprime()
    {
        k=0;
        memset(flag,0,sizeof(flag));
        int i,j;
        for(i=2;i<N;i++)
        {
            if(!flag[i])
            {
                prime[++k]=i;
            }
            for(j=1;j<=k&&prime[j]*i<N;j++)
            {
                flag[prime[j]*i]=1;
                if(i%prime[j]==0)
                    break;
            }
        }
    }
    int main()
    {
         getprime();
         int n;
         while(~scanf("%s%d",s,&n))
         {
             if(s[0]=='0'&&n==0)
                break;
             int len=strlen(s);
             int i=0;
             int l=0,j;
             LL tmp;
            bool first=1;
             while(i<len)
             {
                 j=6;
                 tmp=0;
                 if(first)
                 {
                     j=len%6;
                     first=0;
                 }
                 if(j==0)
                    j=6;
                     while(i<len&&j>0)
                     {
                         tmp=tmp*10+s[i]-'0';
                         i++;j--;
                     }

                 a[++l]=tmp;
             }
             first =1;
            for( i=1;prime[i]<n;i++)
            {
                tmp=0;
                for( j=1;j<=l;j++)
                {
                    tmp=(tmp*1000000+a[j])%prime[i];
                }
                if(tmp==0)
                {
                    first=0;
                    break;
                }
            }
            if(first)
                printf("GOOD\n");
            else
                printf("BAD %lld\n",prime[i]);
         }
        return 0;
    }




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值