CODE 59: Search a 2D Matrix

本文介绍了一种在具有特定排序属性的二维矩阵中查找目标值的高效算法。通过逐行比较,该算法能够快速定位目标元素,适用于各种应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

For example,

Consider the following matrix:

[
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]

Given target = 3, return true.

 

	public boolean searchMatrix(int[][] matrix, int target) {
		// Note: The Solution object is instantiated only once and is reused by
		// each test case.
		if (null == matrix || matrix.length <= 0) {
			return false;
		}
		int rows = matrix.length;
		int cols = matrix[0].length;
		int all = rows * cols;
		boolean finded = false;
		int i;
		for (i = 0; i < all - 1; i++) {
			if (matrix[i / cols][i % cols] > matrix[(i + 1) / cols][(i + 1)
					% cols]) {
				break;
			}
			if (matrix[i / cols][i % cols] == target) {
				finded = true;
			}
		}
		if (i < all - 1) {
			return false;
		} else if (matrix[rows - 1][cols - 1] == target) {
			finded = true;
		}
		return finded;
	}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值