题意:
把每个用户和每个站点都看成一个顶点。建立网络,从源点S向每个用户连接一条容量为收益的有向边,每个用户向相关的两个站点连接一条容量为无穷大的 有向边,每个站点向汇点T连接一条容量为成本的有向边。求出网络最小割集的容量就是Maxflow=(未被选的用户的收益之和 + 被选择的站点的成本之和)。设Total为所有用户的收益之和,我们要求的是(被选的用户的收益之和 – 被选择的站点的成本之和),恰好等于Total – Maxflow,就是最大收益。
为什么是这样的?因为任何一个可行割集对应了一个满足条件的方案,具体来说被选择的顶点就是S集合中的顶点,而割集对应了cut=(未被 选的用户的收益之和 + 被选择的站点的成本之和),我们为了要求的(被选的用户的收益之和 – 被选择的站点的成本之和)= Total – cut尽量大,Total一定,所以要让cut尽量小,直至最小割集。
#include<iostream>
#include<cstdio>
#include<memory.h>
#include<cmath>
using namespace std;
#define MAXN 60000
#define MAXE 320000
#define INF 0x3fffffff
int ne,nv,tmp,s,t,index;
struct Edge{
int next,pair,v;
int cap,fLow;
}edge[MAXE];
int net[MAXN];
int ISAP()
{
int numb[MAXN],dist[MAXN],curedge[MAXN],pre[MAXN];
int cur_fLow,max_fLow;
int u,tmp,neck,i;
memset(dist,0,sizeof(dist));
memset(numb,0,sizeof(numb));
memset(pre,-1,sizeof(pre));
for(i = 1 ; i <= nv ; ++i)
curedge[i] = net[i];
numb[nv] = nv;
max_fLow = 0;
u = s;
while(dist[s] < nv)
{
if(u == t)
{
cur_fLow = INF+1;
for(i = s; i != t;i = edge[curedge[i]].v)
{
if(cur_fLow > edge[curedge[i]].cap)
{
neck = i;
cur_fLow = edge[curedge[i]].cap;
}
}
for(i = s; i != t; i = edge[curedge[i]].v)
{
tmp = curedge[i];
edge[tmp].cap -= cur_fLow;
edge[tmp].fLow += cur_fLow;
tmp = edge[tmp].pair;
edge[tmp].cap += cur_fLow;
edge[tmp].fLow -= cur_fLow;
}
max_fLow += cur_fLow;
u = neck;
}
for(i = curedge[u]; i != -1; i = edge[i].next)
if(edge[i].cap > 0 && dist[u] == dist[edge[i].v]+1)
break;
if(i != -1)
{
curedge[u] = i;
pre[edge[i].v] = u;
u = edge[i].v;
}else{
if(0 == --numb[dist[u]]) break;
curedge[u] = net[u];
for(tmp = nv,i = net[u]; i != -1; i = edge[i].next)
if(edge[i].cap > 0)
tmp = tmp<dist[edge[i].v]?tmp:dist[edge[i].v];
dist[u] = tmp + 1;
++numb[dist[u]];
if(u != s) u = pre[u];
}
}
return max_fLow;
}
void addedge(int u,int v,int f)
{
edge[index].next = net[u];
edge[index].v = v;
edge[index].cap = f;
edge[index].fLow = 0;
edge[index].pair = index+1;
net[u] = index++;
edge[index].next = net[v];
edge[index].v = u;
edge[index].cap = 0;
edge[index].fLow = 0;
edge[index].pair = index-1;
net[v] = index++;
}
int main() {
int i,j,m,n,tmp;
int sum;
int a,b,c;
/*
由此,题目转化为在新的图中求一个闭合图,
使得其点权最大,即最大权闭合子图
由于最小边权是互补的所以用sum-=
*/
while(scanf("%d%d",&n,&m)!=EOF)
{
sum=0;
index=0;
s = 0;
t = n+m+1;
nv=t+1;
memset(net,-1,sizeof(net));
for(i=1;i<=n;i++)
{
scanf("%d",&tmp);
addedge(s,i,tmp);
}
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
sum+=c;//最大获利
//n+i代表边的点
addedge(n+i,t,c);
addedge(a,n+i,INF);
addedge(b,n+i,INF);
}
int ans=ISAP();
printf("%d\n",sum-ans);
}
return 0;
}