设计要求:实现FPGA接收其他设备通过UART协议发送过来的数据
现象:在Quartus II中,使用In system sources and probes editor工具,查看UART接收模块接收到的数据,串口接收到的数据由PC机发出
知识点:UART通信协议工业环境下数据接收实现;
对于其中的每一位进行采样,一般每一位数据的中间点是最稳定的,因此一般应用中,采集中间时刻的数据即可。但在工业应用中,往往有很强的电磁干扰,只采样一次就作为该数据的电平判定,是不保险的,有可能恰好采集到被干扰信号导致出错,因此需要多次采样求概率的方式进行。
红色部分数据可能是不稳定的。绿色部分数据是稳定的,但不排除受电磁干扰出现错误的电平脉冲,因此对这一段电平进行多次采样,求高低电平发生的概率,6次采集结果中,取出现次数多的电平作为采样结果。当采样结果中0和1各占一半,则可判断当前 通信线路环境很恶劣,数据不具有可靠性。
1 串口发送模块包含两个主要组件:(1)Rs232_Rx属于外部输入信号,是异步信号,为避免亚稳态,需要对其进行同步处理;(2)起始位检测进程(检测到下降沿);(3)波特率产生模块(16*10,每位数据都要采集16次,共10位数据,若波特率时钟为9600Hz,应为9600*16);(4)数据接收进程
2 串口发送模块结构图
3 波特率时钟计算
4 代码段
(1)起始位的检测,需先有下降沿的检测,和之前的按键检测一样
reg s0_Rs232_Rx,s1_Rs232_Rx;//同步寄存器
reg tmp0_Rs232_Rx,tmp1_Rs232_Rx;//数据寄存器
wire nedege;
//同步寄存器,消除亚稳态
always@(posedge Clk or negedge Rst_n)
if(!Rst_n)
begin
s0_Rs232_Rx <= 1'b0;
s1_Rs232_Rx <= 1'b0;
end
else
begin
s0_Rs232_Rx <= Rs232_Rx;
s1_Rs232_Rx <= s0_Rs232_Rx;
end
//数据寄存器
always@(posedge Clk or negedge Rst_n)
if(!Rst_n)
begin
tmp0_Rs232_Rx <= 1'b0;
tmp1_Rs232_Rx <= 1'b0;
end
else
begin
tmp0_Rs232_Rx <= s1_Rs232_Rx;
tmp1_Rs232_Rx <= tmp0_Rs232_Rx;
end
//下降沿检测
assign nedege = (!tmp0_Rs232_Rx) & tmp1_Rs232_Rx;
module uart_byte_rx(Clk,Rst_n,baud_set,Rs232_Rx,data_byte,Rx_done);
input Clk;
input Rst_n;
input baud_set;
input Rs232_Rx;
output reg [7:0]data_byte;
output reg Rx_done;
reg s0_Rs232_Rx,s1_Rs232_Rx;//同步寄存器
reg tmp0_Rs232_Rx,tmp1_Rs232_Rx;//数据寄存器
reg [15:0]bps_DR;//分频计数器最大值
reg [15:0]div_cnt;//分频计数器
reg uart_state;
reg bps_clk;
reg [7:0]bps_cnt;
reg [2:0] r_data_byte [7:0];//左侧是位宽,一直加,加到最大是6,右侧是地址位宽度,一共有8位,每位存储的是3位的数据
reg [2:0] START_BITE,STOP_BIT;
reg [7:0] tmp_data_byte;
wire nedege;
//同步寄存器,消除亚稳态
always@(posedge Clk or negedge Rst_n)
if(!Rst_n)
begin
s0_Rs232_Rx <= 1'b0;
s1_Rs232_Rx <= 1'b0;
end
else
begin
s0_Rs232_Rx <= Rs232_Rx;
s1_Rs232_Rx <= s0_Rs232_Rx;
end
//数据寄存器
always@(posedge Clk or negedge Rst_n)
if(!Rst_n)
begin
tmp0_Rs232_Rx <= 1'b0;
tmp1_Rs232_Rx <= 1'b0;
end
else
begin
tmp0_Rs232_Rx <= s1_Rs232_Rx;
tmp1_Rs232_Rx <= tmp0_Rs232_Rx;
end
//下降沿检测
assign nedege = (!tmp0_Rs232_Rx) & tmp1_Rs232_Rx;
//波特率设置模块,查找表
always@(posedge Clk or negedge Rst_n)
if(!Rst_n)
bps_DR <= 16'd324;
else begin
case(baud_set)
0:bps_DR <= 16'd324;
1:bps_DR <= 16'd162;
2:bps_DR <= 16'd80;
3:bps_DR <= 16'd55;
4:bps_DR <= 16'd26;
default:bps_DR <= 16'd324;
endcase
end
//计数器
always@(posedge Clk or negedge Rst_n)
if(!Rst_n)
div_cnt <= 16'd0;
else if(uart_state)
begin
if(div_cnt == bps_DR)
div_cnt <= 16'd0;
else
div_cnt <= div_cnt + 1'b1;
end
else
div_cnt <= 16'd0;
//产生bps_clk
always@(posedge Clk or negedge Rst_n)
if(!Rst_n)
bps_clk <= 1'b0;
else if(div_cnt == 16'd1)
bps_clk <= 1'b1;
else
bps_clk <= 1'b0;
// bps counter
always@(posedge Clk or negedge Rst_n)
if(!Rst_n)
bps_cnt <= 8'd0;
else if(Rx_done || (bps_cnt == 8'd12 && (START_BITE > 2)))//还有一种情况是起始位检测错误
bps_cnt <= 8'd0;
else if(bps_clk)
bps_cnt <= bps_cnt + 1'b1;
else
bps_cnt <= bps_cnt;
always@(posedge Clk or negedge Rst_n)
if(!Rst_n)
Rx_done <= 1'b0;
else if(bps_cnt == 8'd159)
Rx_done <= 1'b1;
else
Rx_done <= 1'b0;
always@(posedge Clk or negedge Rst_n)
if(!Rst_n)
data_byte <= 8'd0;
else if(bps_cnt == 8'd159)
begin //4:100 5:101 6:110只需判断最高位是0还是1,简化逻辑,3算到0里面
data_byte[0] <= r_data_byte[0][2];
data_byte[1] <= r_data_byte[1][2];
data_byte[2] <= r_data_byte[2][2];
data_byte[3] <= r_data_byte[3][2];
data_byte[4] <= r_data_byte[4][2];
data_byte[5] <= r_data_byte[5][2];
data_byte[6] <= r_data_byte[6][2];
data_byte[7] <= r_data_byte[7][2];
end
always@(posedge Clk or negedge Rst_n)
if(!Rst_n)begin
START_BITE <= 3'd0;
r_data_byte[0] <= 3'd0;
r_data_byte[1] <= 3'd0;
r_data_byte[2] <= 3'd0;
r_data_byte[3] <= 3'd0;
r_data_byte[4] <= 3'd0;
r_data_byte[5] <= 3'd0;
r_data_byte[6] <= 3'd0;
r_data_byte[7] <= 3'd0;
STOP_BIT <= 3'd0;
end
else if(bps_clk)
begin
case(bps_cnt)//求概率,应该把每一位数据中的1加起来,共6次,如果加起来的结果大于3则这一位的数据为1,否则为0
0:
begin
START_BITE <= 3'd0;
r_data_byte[0] <= 3'd0;
r_data_byte[1] <= 3'd0;
r_data_byte[2] <= 3'd0;
r_data_byte[3] <= 3'd0;
r_data_byte[4] <= 3'd0;
r_data_byte[5] <= 3'd0;
r_data_byte[6] <= 3'd0;
r_data_byte[7] <= 3'd0;
STOP_BIT <= 3'd0;
end //注意它加的是同步之后的数据,需要测试一下,如果加的是数据寄存器输出的数据如何?????
6,7,8,9,10,11:START_BITE <= START_BITE + s1_Rs232_Rx;//采样起始位
22,23,24,25,26,27:r_data_byte[0] <= r_data_byte[0] + s1_Rs232_Rx;
38,39,40,41,42,43:r_data_byte[1] <= r_data_byte[1] + s1_Rs232_Rx;
54,55,56,57,58,59:r_data_byte[2] <= r_data_byte[2] + s1_Rs232_Rx;
70,71,72,73,74,75:r_data_byte[3] <= r_data_byte[3] + s1_Rs232_Rx;
86,87,88,89,90,91:r_data_byte[4] <= r_data_byte[4] + s1_Rs232_Rx;
102,103,104,105,106,107:r_data_byte[5] <= r_data_byte[5] + s1_Rs232_Rx;
118,119,120,121,122,123:r_data_byte[6] <= r_data_byte[6] + s1_Rs232_Rx;
134,135,136,137,138,139:r_data_byte[7] <= r_data_byte[7] + s1_Rs232_Rx;
150,151,152,153,154,155:STOP_BIT <= STOP_BIT + s1_Rs232_Rx;
default;//对于这部分代码的理解:每计数一次,每一位上的数据r_data_byte[]就要加上6次中的一次,一共6次
endcase
end
always@(posedge Clk or negedge Rst_n)
if(!Rst_n)
uart_state <= 1'b0;
else if(nedege)
uart_state <= 1'b1;
else if(Rx_done || (bps_cnt == 8'd12 && (START_BITE > 2)))//接收完成或接收错误都会停止接收
uart_state <= 1'b0;
else
uart_state <= uart_state;
endmodule