HDU Problem 5773 The All-purpose Zero 【LIS】

The All-purpose Zero

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1562    Accepted Submission(s): 747


Problem Description
?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] <= 1000000).?? has a magic so that he can change 0 to any interger(He does not need to change all 0 to the same interger).?? wants you to help him to find out the length of the longest increasing (strictly) subsequence he can get.
 

Input
The first line contains an interger T,denoting the number of the test cases.(T <= 10)
For each case,the first line contains an interger n,which is the length of the array s.
The next line contains n intergers separated by a single space, denote each number in S.
 

Output
For each test case, output one line containing “Case #x: y”(without quotes), where x is the test case number(starting from 1) and y is the length of the longest increasing subsequence he can get.
 

Sample Input
  
2 7 2 0 2 1 2 0 5 6 1 2 3 3 0 0
 

Sample Output
  
Case #1: 5 Case #2: 5
Hint
In the first case,you can change the second 0 to 3.So the longest increasing subsequence is 0 1 2 3 5.
 

Author
FZU
 

Source
 

Recommend
wange2014   |   We have carefully selected several similar problems for you:   5831  5830  5829  5828  5827 
 
这道题比较麻烦的是零比较难处理。如果将零拿出来,有一个bug是零不起作用(例如:1,0,2)。但是我在博客上学到一种巧妙地处理方法——把每个数减去前面零的个数,这样当遇到上面的问题时就会巧妙地避开。

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 100010;
const int INF = 0x3f3f3f3f;
int ar[MAXN], g[MAXN], dp[MAXN], a[MAXN];
int main() {
    int t , cut = 0;
    scanf("%d", &t);
    while (t--) {
        int C0 = 0, cnt = 0;
        int n; scanf("%d", &n); 
        for (int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
        }
        for (int i = 1; i <= n; i++) {
            if (a[i] == 0) C0++;
            else {
                a[i] -= C0; ar[++cnt] = a[i];
                g[cnt] = INF;
            }
        }
        int ans = 0;
        for (int i = 1; i <= cnt; i++) {
            int k = lower_bound(g + 1, g + 1 + cnt, ar[i]) - g;
            dp[i] = k; g[k] = min(g[k], ar[i]);
            ans = max(dp[i], ans);
        }
        printf("Case #%d: %d\n", ++cut, ans + C0);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值