hdu 5773 The All-purpose Zero (LIS)

本文介绍了一道关于寻找最长递增子序列的算法题,特别考虑了序列中0可以变为任意数字的情况。通过预处理0的数量并调整非0元素值的方式,优化了求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5773


The All-purpose Zero

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1834    Accepted Submission(s): 867


Problem Description
?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] <= 1000000).?? has a magic so that he can change 0 to any interger(He does not need to change all 0 to the same interger).?? wants you to help him to find out the length of the longest increasing (strictly) subsequence he can get.
 

Input
The first line contains an interger T,denoting the number of the test cases.(T <= 10)
For each case,the first line contains an interger n,which is the length of the array s.
The next line contains n intergers separated by a single space, denote each number in S.
 

Output
For each test case, output one line containing “Case #x: y”(without quotes), where x is the test case number(starting from 1) and y is the length of the longest increasing subsequence he can get.
 

Sample Input
  
2 7 2 0 2 1 2 0 5 6 1 2 3 3 0 0
 

Sample Output
  
Case #1: 5 Case #2: 5
Hint
In the first case,you can change the second 0 to 3.So the longest increasing subsequence is 0 1 2 3 5.
 

Author
FZU
 

Source

题目大意:求最长不下降子序列,0可以变成任何数

解析:为了尽可能多的0在序列中,输入数时,记录0的个数,如果不是0, 将这个数减去它前面0的个数,求最长子序列之后加上0的个数即可


代码如下:

#include<iostream>
#include<algorithm>
#include<map>
#include<stack>
#include<queue>
#include<set>
#include<string>
#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#define N 1000009
using namespace std;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double eps = 1e-8;
const double pi = acos(-1.0);
typedef long long LL;
int a[N], dp[N];

int main()
{
    int i, t, n, cnt = 0;
    cin >> t;
    while(t--)
    {
        scanf("%d", &n);
        int k = 0, r = 0, num;
        for(i = 1; i <= n; i++)
        {
            scanf("%d", &num);
            if(num == 0) k++;
            else a[++r] = num - k;
        }
        memset(dp, 0x3f, sizeof(dp));
        for(i = 1; i <= r; i++)
        {
            *lower_bound(dp, dp + r, a[i]) = a[i];
        }
        int l = lower_bound(dp, dp + r, inf) - dp;
        l += k;
        printf("Case #%d: %d\n", ++cnt, l);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值