文献阅读笔记:脉冲神经网络最新文献合集-IX

序号 英文标题 作者及机构 中文翻译 出处 链接
1 Frame-Unit Operating Neuron Circuits for Hardware Recurrent Spiking Neural Networks Yeonwoo Kim1; Bosung Jeon1; Jonghyuk Park1; Woo Young Choi1(1Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, South Korea) 用于硬件递归脉冲神经网络的帧单元操作神经元电路 IEEE Transactions on Electron Devices, 2025, Vol. 72, No. 4, pp. 1795–1801 链接
2 A Charge-Domain Design of Ferroelectric Tunneling Junction Synapse for Spiking Neural Networks Xiaobao Zhu1; Ning Feng1; Jiajun Qiu1; Xianyu Wang1; Min Zeng2; Yanqing Wu2; Lining Zhang1(1Guangdong Provincial Key Laboratory of In-Memory Computing Chips, School of Electronic and Computer Engineering, Peking University, Shenzhen, China; 2School of Integrated Circuits, Peking University, Beijing, China) 用于脉冲神经网络的铁电隧道结突触电荷域设计 IEEE Transactions on Electron Devices, 2025, Vol. 72, No. 4, pp. 1730–1737 链接
3 Research on Anti-Interference Performance of Spiking Neural Network Under Network Connection Damage Yongqiang Zhang1; Haijie Pang2; Jinlong Ma2; Guilei Ma3; Xiaoming Zhang2; Menghua Man3(1School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; 2School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; 3Shijiazhuang Campus, Army Engineering University of PLA, Shijiazhuang 050003, China) 网络连接损伤下脉冲神经网络的抗干扰性能研究 Brain Sciences, 2025, Vol. 15, No. 3, p. 217 链接
4 Noise and Dynamical Synapses as Optimization Tools for Spiking Neural Networks Yana Garipova1; Shogo Yonekura1; Yasuo Kuniyoshi1(1Laboratory for Intelligent Systems and Informatics, University of Tokyo, Tokyo 113-0033, Japan) 噪声和动态突触作为脉冲神经网络的优化工具 Entropy (Basel, Switzerland), 2025, Vol. 27, No. 3, p. 219 链接
5 RRAM-Based Spiking Neural Network With Target-Modulated Spike-Timing-Dependent Plasticity Kalkidan Deme Muleta1; Bai-Sun Kong1(1Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea) 基于RRAM的目标调制脉冲时间依赖可塑性脉冲神经网络 IEEE Transactions on Biomedical Circuits and Systems, 2025, Vol. 19, No. 2, pp. 385–392 链接
6 Biomimetic Spiking Neural Network Based on Monolayer 2-D Synapse With Short-Term Plasticity for Auditory Brainstem Processing Jieun Kim1; Peng Zhou2,3; Unbok Wi4; Bomin Joo1,5; Donguk Choi2,6; Myeong-Lok Seol7; Sravya Pulavarthi2,8; Linfeng Sun9; Heejun Yang10; Woo Jong Yu1; Jin-Woo Han7,5; Sung-Mo Kang11; Bai-Sun Kong12(1Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea; 2Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, USA; 3LuxiTech, Shenzhen, China; 4Department of Artificial Intelligence, Sungkyunkwan University, Suwon, South Korea; 5Samsung Electronics, Hwaseong, South Korea; 6IBM Research, Albany, NY, USA; 7Center for Nanotechnology, NASA Ames Research Center, Moffe
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BetterInsight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值