这是一个很有意思的题。
首先我们可以经过一番探索发现这是一个二分图,然后发现就是希望将每个点的度数限制为2,发现匹配无法完成这个事之后,想到可以使用网络流,问题就解决了。
代码:
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
#include <iostream>
using namespace std;
const int maxn = 200 + 10;
const int INF = 1000000000;
struct Edge {
int from, to, cap, flow;
};
bool operator < (const Edge& a, const Edge& b) {
return a.from < b.from || (a.from == b.from && a.to < b.to);
}
struct ISAP {
int n, m, s, t;
vector<Edge> edges;
vector<int> G[maxn]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[maxn]; // BFS使用
int d[maxn]; // 从起点到i的距离
int cur[maxn]; // 当前弧指针
int p[maxn]; // 可增广路上的上一条弧
int num[maxn]; // 距离标号计数
void AddEdge(int from, int to, int cap) {
edges.push_back((Edge){from, to, cap, 0});
edges.push_back((Edge){to, from, 0, 0});
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(t);
vis[t] = 1;
d[t] = 0;
while(!Q.empty()) {
int x = Q.front(); Q.pop();
for(int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]^1];
if(!vis[e.from] && e.cap > e.flow) {
vis[e.from] = 1;
d[e.from] = d[x] + 1;
Q.push(e.from);
}
}
}
return vis[s];
}
void ClearAll(int n) {
this->n = n;
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
}
void ClearFlow() {
for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;
}
int Augment() {
int x = t, a = INF;
while(x != s) {
Edge& e = edges[p[x]];
a = min(a, e.cap-e.flow);
x = edges[p[x]].from;
}
x = t;
while(x != s) {
edges[p[x]].flow += a;
edges[p[x]^1].flow -= a;
x = edges[p[x]].from;
}
return a;
}
int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = 0;
BFS();
memset(num, 0, sizeof(num));
for(int i = 0; i < n; i++) num[d[i]]++;
int x = s;
memset(cur, 0, sizeof(cur));
while(d[s] < n) {
if(x == t) {
flow += Augment();
//if(flow >= need) return flow;
x = s;
}
int ok = 0;
for(int i = cur[x]; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(e.cap > e.flow && d[x] == d[e.to] + 1) { // Advance
ok = 1;
p[e.to] = G[x][i];
cur[x] = i; // 注意
x = e.to;
break;
}
}
if(!ok) { // Retreat
int m = n-1; // 初值注意
for(int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(e.cap > e.flow) m = min(m, d[e.to]);
}
if(--num[d[x]] == 0) break;
num[d[x] = m+1]++;
cur[x] = 0; // 注意
if(x != s) x = edges[p[x]].from;
}
}
return flow;
}
vector<int> Mincut() { // call this after maxflow
BFS();
vector<int> ans;
for(int i = 0; i < edges.size(); i++) {
Edge& e = edges[i];
if(!vis[e.from] && vis[e.to] && e.cap > 0) ans.push_back(i);
}
return ans;
}
void Reduce() {
for(int i = 0; i < edges.size(); i++) edges[i].cap -= edges[i].flow;
}
void print() {
printf("Graph:\n");
for(int i = 0; i < edges.size(); i++)
printf("%d->%d, %d, %d\n", edges[i].from, edges[i].to , edges[i].cap, edges[i].flow);
}
};
ISAP g;
vector<int> G[maxn];
bool vis[maxn];
int a[maxn];
bool is_prime[20005];
void pre(){
memset(is_prime,true,sizeof(is_prime));
is_prime[1] = false;
for(int i = 2;i < 20005;i++) if(is_prime[i]){
for(int j = 2 * i;j < 20005;j += i){
is_prime[j] = false;
}
}
}
vector<int> ans[maxn];
void dfs(int u,int fa,int id){
ans[id].push_back(u);
vis[u] = true;
for(int i = 0;i < G[u].size();i++){
int v = G[u][i];
if(vis[v] || v == fa) continue;
dfs(v,u,id);
}
}
int main(){
int n;
pre();
cin >> n;
for(int i = 1;i <= n;i++){
scanf("%d",a + i);
}
g.ClearAll(n + 2);
int odd = 0,even = 0;
for(int i = 1;i <= n;i++){
if(a[i] % 2){
odd++;
g.AddEdge(0, i, 2);
}else{
even++;
g.AddEdge(i, n + 1, 2);
}
}
if(odd != even){
printf("Impossible\n");
return 0;
}
for(int i = 1;i <= n;i++){
for(int j = i + 1;j <= n;j++){
if(is_prime[a[i] + a[j]]){
if(a[i] % 2){
g.AddEdge(i, j, 1);
}else{
g.AddEdge(j, i, 1);
}
}
}
}
int f = g.Maxflow(0, n + 1);
//cout << f << endl;
if(f == 2 * odd){
for(int i = 0;i < g.edges.size();i++){
Edge e = g.edges[i];
if(e.cap == 1 && e.flow == 1){
int u = e.from;
int v = e.to;
G[u].push_back(v);
G[v].push_back(u);
}
}
}else{
printf("Impossible\n");
return 0;
}
memset(vis,false,sizeof(vis));
int now = 0;
for(int i = 1;i <= n;i++){
if(!vis[i]){
dfs(i,-1,++now);
}
}
cout << now << endl;
for(int i = 1;i <= now;i++){
cout << ans[i].size();
for(int j = 0;j < ans[i].size();j++){
cout << " " << ans[i][j];
}
cout << endl;
}
return 0;
}