转自:http://blog.youkuaiyun.com/haoliliang88/article/details/51841131
Ethan Rublee等人2011年在《ORB:An Efficient Alternative to SIFT or SURF》文章中提出了ORB算法。结合Fast与Brief算法,并给Fast特征点增加了方向性,使得特征点具有旋转不变性,并提出了构造金字塔方法,解决尺度不变性,但文章中没有具体详述。实验证明,ORB远优于之前的SIFT与SURF算法。
-------------------------------------------------------------------------------------------------------------------------------
论文核心内容概述:
1.构造金字塔,在每层金字塔上采用Fast算法提取特征点,采用Harris角点响应函数,按角点响应值排序,选取前N个特征点。
2. oFast:计算每个特征点的主方向,灰度质心法,计算特征点半径为r的圆形邻域范围内的灰度质心位置。从中心位置到质心位置的向量,定义为该特 征点的主方向。
定义矩的计算公式,x,y∈[-r,r]:
质心位置:
主方向:
3.rBrief:为了解决旋转不变性,把特征点的Patch旋转到主方向上(steered Brief)。通过实验得到,描述子在各个维度上的均值比较离散(偏离0.5),同时维度间相关性很强,说明特征点描述子区分性不好,影响匹配的效果。论文中提出采取学习的方法,采用300K个训练样本点。每一个特征点,选取Patch大小为wp=31,Patch内每对点都采用wt=5大小的子窗口灰度均值做比较,子窗口的个数即为N=(wp-wt)*(wp-wt),从N个窗口中随机选两个做比较即构成描述子的一个bit,论文中采用M=205590种可能的情况:
---------------------------------------------------------------------------------
1.对所有样本点,做M种测试,构成M维的描述子,每个维度上非1即0;
2.按均值对M个维度排序(以0.5为中心),组成向量T;
3.贪婪搜索:把向量T中第一个元素移动到R中,然后继续取T的第二个元素,与R中的所有元素做相关性比较,如果相关性大于指定的阈值Threshold, 抛弃T的这个元素,否则加入到R中;
4.重复第3个步骤,直到R中有256个元素,若检测完毕,少于256个元素,则降低阈值,重复上述步骤;
----------------------------------------------------------------------------------
rBrief:通过上面的步骤取到的256对点,构成的描述子各维度间相关性很低,区分性好;
训练前 训练后
---------------------------------------------------------------------------------------------------------------------------------
ORB算法步骤,参考OpenCV源码:
1.首先构造尺度金字塔;
金字塔共n层,与SIFT不同,每层仅有一副图像;
第s层的尺度为,Fator初始尺度(默认为1.2),原图在第0层;
第s层图像大小:
;
2.在不同尺度上采用Fast检测特征点;在每一层上按公式计算需要提取的特征点数n,在本层上按Fast角点响应值排序,提取前2n个特征点,然后根据Harris 角点响应值排序, 取前n个特征点,作为本层的特征点;
3.计算每个特征点的主方向(质心法);
4.旋转每个特征点的Patch到主方向,采用上述步骤3的选取的最优的256对特征点做τ测试,构成256维描述子,占32个字节;
,
,n=256
4.采用汉明距离做特征点匹配;
----------OpenCV源码解析-------------------------------------------------------
ORB类定义:位置..\features2d.hpp
nfeatures:需要的特征点总数;
scaleFactor:尺度因子;
nlevels:金字塔层数;
edgeThreshold:边界阈值;
firstLevel:起始层;
WTA_K:描述子形成方法,WTA_K=2表示,采用两两比较;
scoreType:角点响应函数,可以选择Harris或者Fast的方法;
patchSize:特征点邻域大小;
- /*!
- ORB implementation.
- */
- class CV_EXPORTS_W ORB : public Feature2D
- {
- public:
- // the size of the signature in bytes
- enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 };
- CV_WRAP explicit ORB(int nfeatures = 500, float scaleFactor = 1.2f, int nlevels = 8, int edgeThreshold = 31,//构造函数
- int firstLevel = 0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31 );
- // returns the descriptor size in bytes
- int descriptorSize() const; //描述子占用的字节数,默认32字节
- // returns the descriptor type
- int descriptorType() const;//描述子类型,8位整形数
- // Compute the ORB features and descriptors on an image
- void operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const;
- // Compute the ORB features and descriptors on an image
- void operator()( InputArray image, InputArray mask, vector<KeyPoint>& keypoints, //提取特征点与形成描述子
- OutputArray descriptors, bool useProvidedKeypoints=false ) const;
- AlgorithmInfo* info() const;
- protected:
- void computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;//计算描述子
- void detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;//检测特征点
- CV_PROP_RW int nfeatures;//特征点总数
- CV_PROP_RW double scaleFactor;//尺度因子
- CV_PROP_RW int nlevels;//金字塔内层数
- CV_PROP_RW int edgeThreshold;//边界阈值
- CV_PROP_RW int firstLevel;//开始层数
- CV_PROP_RW int WTA_K;//描述子形成方法,默认WTA_K=2,两两比较
- CV_PROP_RW int scoreType;//角点响应函数
- CV_PROP_RW int patchSize;//邻域Patch大小
- };
特征提取及形成描述子:通过这个函数对图像提取Fast特征点或者计算特征描述子
_image:输入图像;
_mask:掩码图像;
_keypoints:输入角点;
_descriptors:如果为空,只寻找特征点,不计算特征描述子;
_useProvidedKeypoints:如果为true,函数只计算特征描述子;
- /** Compute the ORB features and descriptors on an image
- * @param img the image to compute the features and descriptors on
- * @param mask the mask to apply
- * @param keypoints the resulting keypoints
- * @param descriptors the resulting descriptors
- * @param do_keypoints if true, the keypoints are computed, otherwise used as an input
- * @param do_descriptors if true, also computes the descriptors
- */
- void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _keypoints,
- OutputArray _descriptors, bool useProvidedKeypoints) const
- {
- CV_Assert(patchSize >= 2);
- bool do_keypoints = !useProvidedKeypoints;
- bool do_descriptors = _descriptors.needed();
- if( (!do_keypoints && !do_descriptors) || _image.empty() )
- return;
- //ROI handling
- const int HARRIS_BLOCK_SIZE = 9;//Harris角点响应需要的边界大小
- int halfPatchSize = patchSize / 2;.//邻域半径
- int border = std::max(edgeThreshold, std::max(halfPatchSize, HARRIS_BLOCK_SIZE/2))+1;//采用最大的边界
- Mat image = _image.getMat(), mask = _mask.getMat();
- if( image.type() != CV_8UC1 )
- cvtColor(_image, image, CV_BGR2GRAY);//转灰度图
- int levelsNum = this->nlevels;//金字塔层数
- if( !do_keypoints ) //不做特征点检测
- {
- // if we have pre-computed keypoints, they may use more levels than it is set in parameters
- // !!!TODO!!! implement more correct method, independent from the used keypoint detector.
- // Namely, the detector should provide correct size of each keypoint. Based on the keypoint size
- // and the algorithm used (i.e. BRIEF, running on 31x31 patches) we should compute the approximate
- // scale-factor that we need to apply. Then we should cluster all the computed scale-factors and
- // for each cluster compute the corresponding image.
- //
- // In short, ultimately the descriptor should
- // ignore octave parameter and deal only with the keypoint size.
- levelsNum = 0;
- for( size_t i = 0; i < _keypoints.size(); i++ )
- levelsNum = std::max(levelsNum, std::max(_keypoints[i].octave, 0));//提取特征点的最大层数
- levelsNum++;
- }
- // Pre-compute the scale pyramids
- vector<Mat> imagePyramid(levelsNum), maskPyramid(levelsNum);//创建尺度金字塔图像
- for (int level = 0; level < levelsNum; ++level)
- {
- float scale = 1/getScale(level, firstLevel, scaleFactor); //每层对应的尺度
- /*
- static inline float getScale(int level, int firstLevel, double scaleFactor)
- {
- return (float)std::pow(scaleFactor, (double)(level - firstLevel));
- }
- */
- Size sz(cvRound(image.cols*scale), cvRound(image.rows*scale));//每层对应的图像大小
- Size wholeSize(sz.width + border*2, sz.height + border*2);
- Mat temp(wholeSize, image.type()), masktemp;
- imagePyramid[level] = temp(Rect(border, border, sz.width, sz.height));
- if( !mask.empty() )
- {
- masktemp = Mat(wholeSize, mask.type());
- maskPyramid[level] = masktemp(Rect(border, border, sz.width, sz.height));
- }
- // Compute the resized image
- if( level != firstLevel ) //得到金字塔每层的图像
- {
- if( level < firstLevel )
- {
- resize(image, imagePyramid[level], sz, 0, 0, INTER_LINEAR);
- if (!mask.empty())
- resize(mask, maskPyramid[level], sz, 0, 0, INTER_LINEAR);
- }
- else
- {
- resize(imagePyramid[level-1], imagePyramid[level], sz, 0, 0, INTER_LINEAR);
- if (!mask.empty())
- {
- resize(maskPyramid[level-1], maskPyramid[level], sz, 0, 0, INTER_LINEAR);
- threshold(maskPyramid[level], maskPyramid[level], 254, 0, THRESH_TOZERO);
- }
- }
- copyMakeBorder(imagePyramid[level], temp, border, border, border, border,//扩大图像的边界
- BORDER_REFLECT_101+BORDER_ISOLATED);
- if (!mask.empty())
- copyMakeBorder(maskPyramid[level], masktemp, border, border, border, border,
- BORDER_CONSTANT+BORDER_ISOLATED);
- }
- else
- {
- copyMakeBorder(image, temp, border, border, border, border,//扩大图像的四个边界
- BORDER_REFLECT_101);
- if( !mask.empty() )
- copyMakeBorder(mask, masktemp, border, border, border, border,
- BORDER_CONSTANT+BORDER_ISOLATED);
- }
- }
- // Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
- vector < vector<KeyPoint> > allKeypoints;
- if( do_keypoints )//提取角点
- {
- // Get keypoints, those will be far enough from the border that no check will be required for the descriptor
- computeKeyPoints(imagePyramid, maskPyramid, allKeypoints, //对每一层图像提取角点,见下面(1)的分析
- nfeatures, firstLevel, scaleFactor,
- edgeThreshold, patchSize, scoreType);
- // make sure we have the right number of keypoints keypoints
- /*vector<KeyPoint> temp;
- for (int level = 0; level < n_levels; ++level)
- {
- vector<KeyPoint>& keypoints = all_keypoints[level];
- temp.insert(temp.end(), keypoints.begin(), keypoints.end());
- keypoints.clear();
- }
- KeyPoint::retainBest(temp, n_features_);
- for (vector<KeyPoint>::iterator keypoint = temp.begin(),
- keypoint_end = temp.end(); keypoint != keypoint_end; ++keypoint)
- all_keypoints[keypoint->octave].push_back(*keypoint);*/
- }
- else //不提取角点
- {
- // Remove keypoints very close to the border
- KeyPointsFilter::runByImageBorder(_keypoints, image.size(), edgeThreshold);
- // Cluster the input keypoints depending on the level they were computed at
- allKeypoints.resize(levelsNum);
- for (vector<KeyPoint>::iterator keypoint = _keypoints.begin(),
- keypointEnd = _keypoints.end(); keypoint != keypointEnd; ++keypoint)
- allKeypoints[keypoint->octave].push_back(*keypoint); //把角点信息存入allKeypoints内
- // Make sure we rescale the coordinates
- for (int level = 0; level < levelsNum; ++level) //把角点位置信息缩放到指定层位置上
- {
- if (level == firstLevel)
- continue;
- vector<KeyPoint> & keypoints = allKeypoints[level];
- float scale = 1/getScale(level, firstLevel, scaleFactor);
- for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
- keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
- keypoint->pt *= scale; //缩放
- }
- }
- Mat descriptors;
- vector<Point> pattern;
- if( do_descriptors ) //计算特征描述子
- {
- int nkeypoints = 0;
- for (int level = 0; level < levelsNum; ++level)
- nkeypoints += (int)allKeypoints[level].size();//得到所有层的角点总数
- if( nkeypoints == 0 )
- _descriptors.release();
- else
- {
- _descriptors.create(nkeypoints, descriptorSize(), CV_8U);//创建一个矩阵存放描述子,每一行表示一个角点信息
- descriptors = _descriptors.getMat();
- }
- const int npoints = 512;//取512个点,共256对,产生256维描述子,32个字节
- Point patternbuf[npoints];
- const Point* pattern0 = (const Point*)bit_pattern_31_;//训练好的256对数据点位置
- if( patchSize != 31 )
- {
- pattern0 = patternbuf;
- makeRandomPattern(patchSize, patternbuf, npoints);
- }
- CV_Assert( WTA_K == 2 || WTA_K == 3 || WTA_K == 4 );
- if( WTA_K == 2 ) //WTA_K=2使用两个点之间作比较
- std::copy(pattern0, pattern0 + npoints, std::back_inserter(pattern));
- else
- {
- int ntuples = descriptorSize()*4;
- initializeOrbPattern(pattern0, pattern, ntuples, WTA_K, npoints);
- }
- }
- _keypoints.clear();
- int offset = 0;
- for (int level = 0; level < levelsNum; ++level)//依次计算每一层的角点描述子
- {
- // Get the features and compute their orientation
- vector<KeyPoint>& keypoints = allKeypoints[level];
- int nkeypoints = (int)keypoints.size();//本层内角点个数
- // Compute the descriptors
- if (do_descriptors)
- {
- Mat desc;
- if (!descriptors.empty())
- {
- desc = descriptors.rowRange(offset, offset + nkeypoints);
- }
- offset += nkeypoints; //偏移量
- // preprocess the resized image
- Mat& workingMat = imagePyramid[level];
- //boxFilter(working_mat, working_mat, working_mat.depth(), Size(5,5), Point(-1,-1), true, BORDER_REFLECT_101);
- GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101);//高斯平滑图像
- computeDescriptors(workingMat, keypoints, desc, pattern, descriptorSize(), WTA_K);//计算本层内角点的描述子,(3)
- }
- // Copy to the output data
- if (level != firstLevel) //角点位置信息返回到原图上
- {
- float scale = getScale(level, firstLevel, scaleFactor);
- for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
- keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
- keypoint->pt *= scale;
- }
- // And add the keypoints to the output
- _keypoints.insert(_keypoints.end(), keypoints.begin(), keypoints.end());//存入描述子信息,返回
- }
- }
(1)提取角点:computeKeyPoints
imagePyramid:即构造好的金字塔
- /** Compute the ORB keypoints on an image
- * @param image_pyramid the image pyramid to compute the features and descriptors on
- * @param mask_pyramid the masks to apply at every level
- * @param keypoints the resulting keypoints, clustered per level
- */
- static void computeKeyPoints(const vector<Mat>& imagePyramid,
- const vector<Mat>& maskPyramid,
- vector<vector<KeyPoint> >& allKeypoints,
- int nfeatures, int firstLevel, double scaleFactor,
- int edgeThreshold, int patchSize, int scoreType )
- {
- int nlevels = (int)imagePyramid.size(); //金字塔层数
- vector<int> nfeaturesPerLevel(nlevels);
- // fill the extractors and descriptors for the corresponding scales
- float factor = (float)(1.0 / scaleFactor);
- float ndesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)pow((double)factor, (double)nlevels));//
- int sumFeatures = 0;
- for( int level = 0; level < nlevels-1; level++ ) //对每层图像上分配相应角点数
- {
- nfeaturesPerLevel[level] = cvRound(ndesiredFeaturesPerScale);
- sumFeatures += nfeaturesPerLevel[level];
- ndesiredFeaturesPerScale *= factor;
- }
- nfeaturesPerLevel[nlevels-1] = std::max(nfeatures - sumFeatures, 0);//剩下角点数,由最上层图像提取
- // Make sure we forget about what is too close to the boundary
- //edge_threshold_ = std::max(edge_threshold_, patch_size_/2 + kKernelWidth / 2 + 2);
- // pre-compute the end of a row in a circular patch
- int halfPatchSize = patchSize / 2; //计算每个特征点圆邻域的位置信息
- vector<int> umax(halfPatchSize + 2);
- int v, v0, vmax = cvFloor(halfPatchSize * sqrt(2.f) / 2 + 1);
- int vmin = cvCeil(halfPatchSize * sqrt(2.f) / 2);
- for (v = 0; v <= vmax; ++v) //
- umax[v] = cvRound(sqrt((double)halfPatchSize * halfPatchSize - v * v));
- // Make sure we are symmetric
- for (v = halfPatchSize, v0 = 0; v >= vmin; --v)
- {
- while (umax[v0] == umax[v0 + 1])
- ++v0;
- umax[v] = v0;
- ++v0;
- }
- allKeypoints.resize(nlevels);
- for (int level = 0; level < nlevels; ++level)
- {
- int featuresNum = nfeaturesPerLevel[level];
- allKeypoints[level].reserve(featuresNum*2);
- vector<KeyPoint> & keypoints = allKeypoints[level];
- // Detect FAST features, 20 is a good threshold
- FastFeatureDetector fd(20, true);
- fd.detect(imagePyramid[level], keypoints, maskPyramid[level]);//Fast角点检测
- // Remove keypoints very close to the border
- KeyPointsFilter::runByImageBorder(keypoints, imagePyramid[level].size(), edgeThreshold);//去除邻近边界的点
- if( scoreType == ORB::HARRIS_SCORE )
- {
- // Keep more points than necessary as FAST does not give amazing corners
- KeyPointsFilter::retainBest(keypoints, 2 * featuresNum);//按Fast强度排序,保留前2*featuresNum个特征点
- // Compute the Harris cornerness (better scoring than FAST)
- HarrisResponses(imagePyramid[level], keypoints, 7, HARRIS_K); //计算每个角点的Harris强度响应
- }
- //cull to the final desired level, using the new Harris scores or the original FAST scores.
- KeyPointsFilter::retainBest(keypoints, featuresNum);//按Harris强度排序,保留前featuresNum个
- float sf = getScale(level, firstLevel, scaleFactor);
- // Set the level of the coordinates
- for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
- keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
- {
- keypoint->octave = level; //层信息
- keypoint->size = patchSize*sf; //
- }
- computeOrientation(imagePyramid[level], keypoints, halfPatchSize, umax); //计算角点的方向,(2)分析
- }
- }
- static void computeOrientation(const Mat& image, vector<KeyPoint>& keypoints,
- int halfPatchSize, const vector<int>& umax)
- {
- // Process each keypoint
- for (vector<KeyPoint>::iterator keypoint = keypoints.begin(), //为每个角点计算主方向
- keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
- {
- keypoint->angle = IC_Angle(image, halfPatchSize, keypoint->pt, umax);//计算质心方向
- }
- }
- static float IC_Angle(const Mat& image, const int half_k, Point2f pt,
- const vector<int> & u_max)
- {
- int m_01 = 0, m_10 = 0;
- const uchar* center = &image.at<uchar> (cvRound(pt.y), cvRound(pt.x));
- // Treat the center line differently, v=0
- for (int u = -half_k; u <= half_k; ++u)
- m_10 += u * center[u];
- // Go line by line in the circular patch
- int step = (int)image.step1();
- for (int v = 1; v <= half_k; ++v) //每次处理对称的两行v
- {
- // Proceed over the two lines
- int v_sum = 0;
- int d = u_max[v];
- for (int u = -d; u <= d; ++u)
- {
- int val_plus = center[u + v*step], val_minus = center[u - v*step];
- v_sum += (val_plus - val_minus); //计算m_01时,位置上差一个符号
- m_10 += u * (val_plus + val_minus);
- }
- m_01 += v * v_sum;//计算上下两行的m_01
- }
- return fastAtan2((float)m_01, (float)m_10);//计算角度
- }
- static void computeDescriptors(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors,
- const vector<Point>& pattern, int dsize, int WTA_K)
- {
- //convert to grayscale if more than one color
- CV_Assert(image.type() == CV_8UC1);
- //create the descriptor mat, keypoints.size() rows, BYTES cols
- descriptors = Mat::zeros((int)keypoints.size(), dsize, CV_8UC1);
- for (size_t i = 0; i < keypoints.size(); i++)
- computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i), dsize, WTA_K);
- }
- static void computeOrbDescriptor(const KeyPoint& kpt,
- const Mat& img, const Point* pattern,
- uchar* desc, int dsize, int WTA_K)
- {
- float angle = kpt.angle;
- //angle = cvFloor(angle/12)*12.f;
- angle *= (float)(CV_PI/180.f);
- float a = (float)cos(angle), b = (float)sin(angle);
- const uchar* center = &img.at<uchar>(cvRound(kpt.pt.y), cvRound(kpt.pt.x));
- int step = (int)img.step;
- #if 1
- #define GET_VALUE(idx) \ //取旋转后一个像素点的值
- center[cvRound(pattern[idx].x*b + pattern[idx].y*a)*step + \
- cvRound(pattern[idx].x*a - pattern[idx].y*b)]
- #else
- float x, y;
- int ix, iy;
- #define GET_VALUE(idx) \ //取旋转后一个像素点,插值法
- (x = pattern[idx].x*a - pattern[idx].y*b, \
- y = pattern[idx].x*b + pattern[idx].y*a, \
- ix = cvFloor(x), iy = cvFloor(y), \
- x -= ix, y -= iy, \
- cvRound(center[iy*step + ix]*(1-x)*(1-y) + center[(iy+1)*step + ix]*(1-x)*y + \
- center[iy*step + ix+1]*x*(1-y) + center[(iy+1)*step + ix+1]*x*y))
- #endif
- if( WTA_K == 2 )
- {
- for (int i = 0; i < dsize; ++i, pattern += 16)//每个特征描述子长度为32个字节
- {
- int t0, t1, val;
- t0 = GET_VALUE(0); t1 = GET_VALUE(1);
- val = t0 < t1;
- t0 = GET_VALUE(2); t1 = GET_VALUE(3);
- val |= (t0 < t1) << 1;
- t0 = GET_VALUE(4); t1 = GET_VALUE(5);
- val |= (t0 < t1) << 2;
- t0 = GET_VALUE(6); t1 = GET_VALUE(7);
- val |= (t0 < t1) << 3;
- t0 = GET_VALUE(8); t1 = GET_VALUE(9);
- val |= (t0 < t1) << 4;
- t0 = GET_VALUE(10); t1 = GET_VALUE(11);
- val |= (t0 < t1) << 5;
- t0 = GET_VALUE(12); t1 = GET_VALUE(13);
- val |= (t0 < t1) << 6;
- t0 = GET_VALUE(14); t1 = GET_VALUE(15);
- val |= (t0 < t1) << 7;
- desc[i] = (uchar)val;
- }
- }
- else if( WTA_K == 3 )
- {
- for (int i = 0; i < dsize; ++i, pattern += 12)
- {
- int t0, t1, t2, val;
- t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2);
- val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0);
- t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5);
- val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2;
- t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8);
- val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4;
- t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11);
- val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6;
- desc[i] = (uchar)val;
- }
- }
- else if( WTA_K == 4 )
- {
- for (int i = 0; i < dsize; ++i, pattern += 16)
- {
- int t0, t1, t2, t3, u, v, k, val;
- t0 = GET_VALUE(0); t1 = GET_VALUE(1);
- t2 = GET_VALUE(2); t3 = GET_VALUE(3);
- u = 0, v = 2;
- if( t1 > t0 ) t0 = t1, u = 1;
- if( t3 > t2 ) t2 = t3, v = 3;
- k = t0 > t2 ? u : v;
- val = k;
- t0 = GET_VALUE(4); t1 = GET_VALUE(5);
- t2 = GET_VALUE(6); t3 = GET_VALUE(7);
- u = 0, v = 2;
- if( t1 > t0 ) t0 = t1, u = 1;
- if( t3 > t2 ) t2 = t3, v = 3;
- k = t0 > t2 ? u : v;
- val |= k << 2;
- t0 = GET_VALUE(8); t1 = GET_VALUE(9);
- t2 = GET_VALUE(10); t3 = GET_VALUE(11);
- u = 0, v = 2;
- if( t1 > t0 ) t0 = t1, u = 1;
- if( t3 > t2 ) t2 = t3, v = 3;
- k = t0 > t2 ? u : v;
- val |= k << 4;
- t0 = GET_VALUE(12); t1 = GET_VALUE(13);
- t2 = GET_VALUE(14); t3 = GET_VALUE(15);
- u = 0, v = 2;
- if( t1 > t0 ) t0 = t1, u = 1;
- if( t3 > t2 ) t2 = t3, v = 3;
- k = t0 > t2 ? u : v;
- val |= k << 6;
- desc[i] = (uchar)val;
- }
- }
- else
- CV_Error( CV_StsBadSize, "Wrong WTA_K. It can be only 2, 3 or 4." );
- #undef GET_VALUE
- }
参考:
Ethan Rublee et. ORB:An Efficient Alternative to SIFT or SURF
http://www.cnblogs.com/ronny/p/4083537.html