如何用逻辑回归做数据分析?

本文介绍了逻辑回归的原理,它是用于解决二分类问题的监督学习算法。逻辑回归通过将线性回归结果输入sigmoid函数,转换为0-1区间概率,以此进行分类。文章还探讨了逻辑回归的目标函数,解释了为何不能使用误差平方和,并给出了逻辑回归的Python实现示例,以鸢尾花数据集为例进行模型训练和性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天我们将学习逻辑回归(logistics regression),由于逻辑回归是基于线性回归的特殊变化,故还没有掌握线性回归的小伙伴,可以先点击这里,传送门:如何用线性回归做数据分析?接下来,我将用最简单通俗的语言来为大家介绍逻辑回归模型及其应用。

逻辑回归是解决二分类问题的监督学习算法,用来估计某个类别的概率。其直接预测值是表示0-1区间概率的数据,基于概率再划定阈值进行分类,而求解概率的过程就是回归的过程。

 

逻辑回归应用于数据分析的场景主要有三种:

  • 驱动力分析:某个事件发生与否受多个因素所影响,分析不同因素对事件发生驱动力的强弱(驱动力指相关性,不是因果性);

  • 预测:预测事件发生的概率;

  • 分类:适合做多种分类算法、因果分析等的基础组件;

01

    

逻辑回归的原理

下图是之前讲到的线性回归模型的数据分布,线性回归是用一条线来拟合自变量和因变量之间的关系,我们可以看到其输出结果y是连续的。例如我们想预测不同用户特征对所使用产品的满意分,可以采用线性回归模型。但是如果我们想根据这些因素去判断用户的性别,或者是否推荐使用等,之前的线性回归就不适用了,这时,我们就要用到逻辑回归进行二分类了。但是分类模型输出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值