2024 VCTF --- Crypto wp

博客围绕Python在网络安全相关题目中的应用展开。介绍了“狂飙”题目中利用sage的divisors()函数找因子确定key,以及“RRSA”题目里根据相关公式计算d进行RSA解密获取flag,还涉及构造格、格基规约等计算phi的方法。

文章目录

狂飙

题目:

import os
from flag import flag
from Crypto.Util.number import *
from Crypto.Cipher import AES
m = 88007513702424243702066490849596817304827839547007641526433597788800212065249
key = os.urandom(24)
key = bytes_to_long(key)
n=m % key
flag += (16 - len(flag) % 16) * b'\x00'
iv = os.urandom(16)
aes = AES.new(key,AES.MODE_CBC,iv)
enc_flag = aes.encrypt(flag)

print(n)
print(enc_flag)
print(iv)


#103560843006078708944833658339172896192389513625588
#b'\xfc\x87\xcb\x8e\x9d\x1a\x17\x86\xd9~\x16)\xbfU\x98D\xfe\x8f\xde\x9c\xb0\xd1\x9e\xe7\xa7\xefiY\x95C\x14\x13C@j1\x9d\x08\xd9\xe7W>F2\x96cm\xeb'
#b'UN\x1d\xe2r<\x1db\x00\xdb\x9a\x84\x1e\x82\xf0\x86'

已知如下式子
n = m   m o d   k e y n = m \space mod \space key n=m mod key
则有
k × k e y = m − n k\times key = m-n k×key=mn
使用sage的divisors()函数可以得到k*key的所有因子组合,然后我们遍历一下符合题目要求的因子即可找到key

#sage
from Crypto.Util.number import *
from Crypto.Cipher import AES

m = 88007513702424243702066490849596817304827839547007641526433597788800212065249
n = 103560843006078708944833658339172896192389513625588
enc = b'\xfc\x87\xcb\x8e\x9d\x1a\x17\x86\xd9~\x16)\xbfU\x98D\xfe\x8f\xde\x9c\xb0\xd1\x9e\xe7\xa7\xefiY\x95C\x14\x13C@j1\x9d\x08\xd9\xe7W>F2\x96cm\xeb'
iv  = b'UN\x1d\xe2r<\x1db\x00\xdb\x9a\x84\x1e\x82\xf0\x86'
tmp = m-n
data = divisors(tmp)
for i in data:
    if i.nbits()<=192 and i.nbits()>=184 and tmp%i==0:
        key = long_to_bytes(i)
        aes = AES.new(key,AES.MODE_CBC,iv)
        flag = aes.decrypt(enc)
        if b'flag' in flag:
            print(flag)
            break
#flag{cf735a4d-f9d9-5110-8a73-5017fc39b1b0}

RRSA

题目:

from flag import flag
import random
from Crypto.Util.number import *

def genprime():
	o = getPrime(300)
	while True:
		r = random.randint(2**211,2**212)
		if isPrime(o*r+1):
			return o,o*r+1
o1,p = genprime()
o2,q = genprime()
n=p*q
g = random.randint(2,n)
order = o1*o2

a = pow(g, (p-1)*(q-1)//order, n)
assert pow(a,order,n)==1

m = bytes_to_long(flag)
e = 65537
c = pow(m,e,n)
print(f'n={
     
     n}')
print(f'c={
     
     c}')
print(f'a={
     
     a}')
print(f'o={
     
     order}')
n=44435425447782114838897637647733409614831121089064725526413247701631122523646623518523253532066782191116739274354991533158902831935676078270115998050827358178237970133151467497051097694866238654012042884894924846645692294679774577780414805605811029994570132760841672754334836945991390844881416693502552870759
c=41355409695119524180275572228024314281790321005050664347253778436753663918879919757571129194249071204946415158483084730406579433518426895158142068246063333111438863836668823874266012696265984976829088976346775293102571794377818611709336242495598331872036489022428750111592728015245733975923531682859930386731
a=39844923600973712577104437232871220768052114284995840460375902596405104689968610170336151307934820030811039502338683925817667771016288030594299464019664781911131177394369348831163266849069740191783143327911986419528382896919157135487360024877230254274474109707112110411601273850406237677432935818199348150470
o=1745108106200960949680880500144134006212310627077303652648249235148621661187609612344828833696608872318217367008018829485062303972702933973340909520462917612611270028511222134076453

非预期:
根据genprime()函数可知
p = o 1 r 1 + 1 , q = o 2 r 2 + 1 p = o_1r_1+1,q = o_2r_2+1 p=o1r1+1,q=o2r2+1
则有
n = p q = o 1 r 1 o 2 r 2 + o 1 r 1 + o 2 r 2 + 1 n = pq = o_1r_1o_2r_2+o_1r_1+o_2r_2+1 n=pq=o1r1

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值