单样本检验:引擎排放标准是否达标?

通过对10台引擎排放水平的数据分析,发现样本平均值为17.17ppm,标准差为2.98ppm。采用单样本t检验,得出p值为.0074,95%置信区间为[15.037353,19.302647]。结论是公司引擎排放满足政府的环保标准。" 112405449,10538859,Vue面试深度解析:20+必问知识点详解,"['前端开发', 'Vue', 'Vue2.x', 'Vue3.x', '面试指南', '组件通信']

单样本检验 案例练习
根据政府要求新排放标准:引擎排放平均值<20ppm,才到达环保的要求。

有某家生产汽车引擎的公司,需要测试该公司的引擎排放是否达到标准。

现在有10台引擎供测试使用,每一台的引擎排放水平的数据分别为:15,6,16.2,22.5,20.5,16.4,19.4,16.6,17.9,12.7,13.9

如果知道该公司的引擎是否达到政府要求的排放标准呢?

一、求样本平均值和样本标准差

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#样本数据集
dataSer=pd.Series([15.6,16.2,22.5,20.5,16.4,19.4,16.6,17.9,12.7,13.9])
#样本平均值
sample_mean=dataSer.mean()
#样本标准差
sample_std=dataSe
【SCI级别】多策略改进鲸鱼优化算法(HHWOA)和鲸鱼优化算法(WOA)在CEC2017测试集函数F1-F30寻优对比内容概要:本文档主要介绍了一项关于多策略改进鲸鱼优化算法(HHWOA)与标准鲸鱼优化算法(WOA)在CEC2017测试集函数F1-F30上进行寻优性能对比的研究,属于智能优化算法领域的高水平科研工作。文中通过Matlab代码实现算法仿真,重点展示了HHWOA在收敛速度、寻优精度和稳定性方面的优势,体现了多策略改进的有效性。该研究适用于复杂优化问题求解,尤其在工程优化、参数辨识、机器学习超参数调优等领域具有应用潜力。; 适合人群:具备一定算法基础和Matlab编程能力的研究生、科研人员及从事智能优化算法开发与应用的工程技术人员,尤其适合致力于SCI论文写作与算法创新的研究者。; 使用场景及目标:①用于理解鲸鱼优化算法的基本原理及多策略改进思路(如种群初始化、非线性收敛因子、精英反向学习等);②为智能优化算法的性能测试与对比实验提供CEC2017标准测试平台的实现参考;③支撑学术研究中的算法创新与论文复现工作。; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注HHWOA的改进策略模块与WOA的差异,通过重复实验验证算法性能,并可将其思想迁移至其他优化算法的改进中,提升科研创新能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值