hdoj1009

FatMouse' Trade

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)


Problem Description
FatMouse prepared M pounds of cat food, ready to trade with the cats guarding the warehouse containing his favorite food, JavaBean.
The warehouse has N rooms. The i-th room contains J[i] pounds of JavaBeans and requires F[i] pounds of cat food. FatMouse does not have to trade for all the JavaBeans in the room, instead, he may get J[i]* a% pounds of JavaBeans if he pays F[i]* a% pounds of cat food. Here a is a real number. Now he is assigning this homework to you: tell him the maximum amount of JavaBeans he can obtain.
 

Input
The input consists of multiple test cases. Each test case begins with a line containing two non-negative integers M and N. Then N lines follow, each contains two non-negative integers J[i] and F[i] respectively. The last test case is followed by two -1's. All integers are not greater than 1000.
 

Output
For each test case, print in a single line a real number accurate up to 3 decimal places, which is the maximum amount of JavaBeans that FatMouse can obtain.
 

Sample Input
  
5 3 7 2 4 3 5 2 20 3 25 18 24 15 15 10 -1 -1
 

Sample Output
  
13.333 31.500
 

Author
CHEN, Yue
 

Source
 

Recommend
JGShining
#include<stdio.h>
#include<stdlib.h>

#define size 1001

int m;
int n;

double max;

struct room {
    double j;
    double f;
    double price;
} room[size];//房间结构,j为JavaBeans的数量,f为猫食,price为JavaBeans的价格

int cmp(const void*p1, const void*p2) {
    return ((struct room *)p2)->price < ((struct room *)p1)->price?1:-1;
}//快排函数,price小的放在前面

int main(void) {
    while (scanf("%d%d", &m, &n), m + 1) {
        for (int i = 0; i < n; i++) {
            scanf("%lf%lf", &room[i].j, &room[i].f);
            room[i].price = room[i].f / room[i].j;
        }
        qsort(room, n, sizeof (room[0]),cmp);//对room数组进行排序
        max = 0;
        for (int i = 0; i < n; i++) {
            if (m > room[i].f) {
                max += room[i].j;
                m -= room[i].f;
            } else {
                max += m / room[i].price;
                break;
            }
        }
        printf("%.3lf\n", max);
    }
    return 0;
}


【完美复现】面向配电网韧性提升的移动储能预布局与动态调度策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于IEEE33节点的配电网韧性提升方法,重点研究了移动储能系统的预布局与动态调度策略。通过Matlab代码实现,提出了一种结合预配置和动态调度的两阶段优化模型,旨在应对电网故障或极端事件时快速恢复供电能力。文中采用了多种智能优化算法(如PSO、MPSO、TACPSO、SOA、GA等)进行对比分析,验证所提策略的有效性和优越性。研究不仅关注移动储能单元的初始部署位置,还深入探讨其在故障发生后的动态路径规划与电力支援过程,从而全面提升配电网的韧性水平。; 适合人群:具备电力系统基础知识和Matlab编程能力的研究生、科研人员及从事智能电网、能源系统优化等相关领域的工程技术人员。; 使用场景及目标:①用于科研复现,特别是IEEE顶刊或SCI一区论文中关于配电网韧性、应急电源调度的研究;②支撑电力系统在灾害或故障条件下的恢复力优化设计,提升实际电网应对突发事件的能力;③为移动储能系统在智能配电网中的应用提供理论依据和技术支持。; 阅读建议:建议读者结合提供的Matlab代码逐模块分析,重点关注目标函数建模、约束条件设置以及智能算法的实现细节。同时推荐参考文中提及的MPS预配置与动态调度上下两部分,系统掌握完整的技术路线,并可通过替换不同算法或测试系统进一步拓展研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值