hdoj1548

本文探讨了一种特殊的电梯系统,该系统在每一层楼都有特定的上下行移动距离。通过输入建筑层数、起始楼层、目标楼层以及每层楼的移动参数,我们介绍了如何使用算法计算从起始楼层到达目标楼层所需的最少按钮按下次数。包括使用迪杰斯特拉算法和广度优先搜索两种方法来解决路径优化问题。

A strange lift

                                                                              Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Problem Description
There is a strange lift.The lift can stop can at every floor as you want, and there is a number Ki(0 <= Ki <= N) on every floor.The lift have just two buttons: up and down.When you at floor i,if you press the button "UP" , you will go up Ki floor,i.e,you will go to the i+Ki th floor,as the same, if you press the button "DOWN" , you will go down Ki floor,i.e,you will go to the i-Ki th floor. Of course, the lift can't go up high than N,and can't go down lower than 1. For example, there is a buliding with 5 floors, and k1 = 3, k2 = 3,k3 = 1,k4 = 2, k5 = 5.Begining from the 1 st floor,you can press the button "UP", and you'll go up to the 4 th floor,and if you press the button "DOWN", the lift can't do it, because it can't go down to the -2 th floor,as you know ,the -2 th floor isn't exist.
Here comes the problem: when you is on floor A,and you want to go to floor B,how many times at least he havt to press the button "UP" or "DOWN"?
 

Input
The input consists of several test cases.,Each test case contains two lines.
The first line contains three integers N ,A,B( 1 <= N,A,B <= 200) which describe above,The second line consist N integers k1,k2,....kn.
A single 0 indicate the end of the input.
 

Output
For each case of the input output a interger, the least times you have to press the button when you on floor A,and you want to go to floor B.If you can't reach floor B,printf "-1".
 

Sample Input
5 1 5 3 3 1 2 5 0
 

Sample Output
3
 

Recommend
8600
 
#include<stdio.h>
#include<memory.h>
#define inf 100000000
#define size 201
int map[size][size];

int dist[size];
int visit[size];

int min;
int dir;

int a;
int b;
int n;

int x;

void dijkstra(void)
{
    for(int i=1;i<=n;i++)
        dist[i]=map[a][i];
    
    visit[a]=1;
    dist[a]=0;
    for(int i=1;i<=n;i++){
        min=inf;
        for(int j=1;j<=n;j++)
            if(dist[j]<min&&!visit[j]){
                min=dist[j];
                dir=j;
            }
        if(min==inf)
            break;
        visit[dir]=1;
        for(int j=1;j<=n;j++)
            if(!visit[j]&&dist[j]>dist[dir]+map[dir][j])
                dist[j]=dist[dir]+map[dir][j];
    }
}
int main(void) {
    while (scanf("%d", &n) &&n) {
        memset(visit,0,sizeof(visit));
        scanf("%d %d", &a, &b);
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++)
                map[i][j] = inf;
            scanf("%d", &x);
            if (i + x <= n)
                map[i][i + x] = 1;
            if (i - x >= 1)
                map[i][i - x] = 1;
        }
		dijkstra();
        if (dist[b] == inf)
            printf("-1\n");
        else
            printf("%d\n", dist[b]);
    }
    return 0;
}

bfs:
#include<iostream>
#include<cstring>
using namespace std;

typedef struct {
    int floor;
    int time;
} Q;
int go[201];
int visit[201];
Q queue[10000];

int bfs(int n, int a, int b) {
    memset(visit, 0, sizeof (visit));
    memset(queue, 0, sizeof (queue));
    int qhead = 0;
    int qtail = 0;
    queue[qtail].floor = a;
    queue[qtail].time = 0;
    visit[queue[qhead].floor] = 1;
    qtail++;
    while (qhead < qtail) {
        if ((queue[qhead].floor + go[queue[qhead].floor] >= 1)
                && (queue[qhead].floor + go[queue[qhead].floor] <= n)
                && !visit[queue[qhead].floor + go[queue[qhead].floor]]) {
            if (queue[qhead].floor + go[queue[qhead].floor] == b)
                return queue[qhead].time + 1;
            visit[queue[qhead].floor + go[queue[qhead].floor]] = 1;
            Q tmp;
            tmp.floor = queue[qhead].floor + go[queue[qhead].floor];
            tmp.time = queue[qhead].time + 1;
            queue[qtail++] = tmp;
        }
        if ((queue[qhead].floor - go[queue[qhead].floor] >= 1)
                && (queue[qhead].floor - go[queue[qhead].floor] <= n)
                && !visit[queue[qhead].floor - go[queue[qhead].floor]]) {
            if (queue[qhead].floor - go[queue[qhead].floor] == b)
                return queue[qhead].time + 1;
            visit[queue[qhead].floor - go[queue[qhead].floor]] = 1;
            Q tmp;
            tmp.floor = queue[qhead].floor - go[queue[qhead].floor];
            tmp.time = queue[qhead].time + 1;
            queue[qtail++] = tmp;
        }
        qhead++;
    }
    return -1;
}

int main(void) {
    int n, a, b;
    while (cin >> n, n) {
        cin >> a >> b;
        for (int i = 1; i <= n; i++)
            cin >> go[i];
        if (a == b)
            cout << '0' << endl;
        else
            cout << bfs(n, a, b) << endl;
    }
    return 0;
}



内容概要:本文档是一份关于交换路由配置的学习笔记,系统地介绍了网络设备的远程管理、交换机与路由器的核心配置技术。内容涵盖Telnet、SSH、Console三种远程控制方式的配置方法;详细讲解了VLAN划分原理及Access、Trunk、Hybrid端口的工作机制,以及端口镜像、端口汇聚、端口隔离等交换技术;深入解析了STP、MSTP、RSTP生成树协议的作用与配置步骤;在路由部分,涵盖了IP地址配置、DHCP服务部署(接口池与全局池)、NAT转换(静态与动态)、静态路由、RIP与OSPF动态路由协议的配置,并介绍了策略路由和ACL访问控制列表的应用;最后简要说明了华为防火墙的安全区域划分与基本安全策略配置。; 适合人群:具备一定网络基础知识,从事网络工程、运维或相关技术岗位1-3年的技术人员,以及准备参加HCIA/CCNA等认证考试的学习者。; 使用场景及目标:①掌握企业网络中常见的交换与路由配置技能,提升实际操作能力;②理解VLAN、STP、OSPF、NAT、ACL等核心技术原理并能独立完成中小型网络搭建与调试;③通过命令示例熟悉华为设备CLI配置逻辑,为项目实施和故障排查提供参考。; 阅读建议:此笔记以实用配置为主,建议结合模拟器(如eNSP或Packet Tracer)动手实践每一条命令,对照拓扑理解数据流向,重点关注VLAN间通信、路由选择机制、安全策略控制等关键环节,并注意不同设备型号间的命令差异。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值