hdoj1548

本文探讨了一种特殊的电梯系统,该系统在每一层楼都有特定的上下行移动距离。通过输入建筑层数、起始楼层、目标楼层以及每层楼的移动参数,我们介绍了如何使用算法计算从起始楼层到达目标楼层所需的最少按钮按下次数。包括使用迪杰斯特拉算法和广度优先搜索两种方法来解决路径优化问题。

A strange lift

                                                                              Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Problem Description
There is a strange lift.The lift can stop can at every floor as you want, and there is a number Ki(0 <= Ki <= N) on every floor.The lift have just two buttons: up and down.When you at floor i,if you press the button "UP" , you will go up Ki floor,i.e,you will go to the i+Ki th floor,as the same, if you press the button "DOWN" , you will go down Ki floor,i.e,you will go to the i-Ki th floor. Of course, the lift can't go up high than N,and can't go down lower than 1. For example, there is a buliding with 5 floors, and k1 = 3, k2 = 3,k3 = 1,k4 = 2, k5 = 5.Begining from the 1 st floor,you can press the button "UP", and you'll go up to the 4 th floor,and if you press the button "DOWN", the lift can't do it, because it can't go down to the -2 th floor,as you know ,the -2 th floor isn't exist.
Here comes the problem: when you is on floor A,and you want to go to floor B,how many times at least he havt to press the button "UP" or "DOWN"?
 

Input
The input consists of several test cases.,Each test case contains two lines.
The first line contains three integers N ,A,B( 1 <= N,A,B <= 200) which describe above,The second line consist N integers k1,k2,....kn.
A single 0 indicate the end of the input.
 

Output
For each case of the input output a interger, the least times you have to press the button when you on floor A,and you want to go to floor B.If you can't reach floor B,printf "-1".
 

Sample Input
5 1 5 3 3 1 2 5 0
 

Sample Output
3
 

Recommend
8600
 
#include<stdio.h>
#include<memory.h>
#define inf 100000000
#define size 201
int map[size][size];

int dist[size];
int visit[size];

int min;
int dir;

int a;
int b;
int n;

int x;

void dijkstra(void)
{
    for(int i=1;i<=n;i++)
        dist[i]=map[a][i];
    
    visit[a]=1;
    dist[a]=0;
    for(int i=1;i<=n;i++){
        min=inf;
        for(int j=1;j<=n;j++)
            if(dist[j]<min&&!visit[j]){
                min=dist[j];
                dir=j;
            }
        if(min==inf)
            break;
        visit[dir]=1;
        for(int j=1;j<=n;j++)
            if(!visit[j]&&dist[j]>dist[dir]+map[dir][j])
                dist[j]=dist[dir]+map[dir][j];
    }
}
int main(void) {
    while (scanf("%d", &n) &&n) {
        memset(visit,0,sizeof(visit));
        scanf("%d %d", &a, &b);
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++)
                map[i][j] = inf;
            scanf("%d", &x);
            if (i + x <= n)
                map[i][i + x] = 1;
            if (i - x >= 1)
                map[i][i - x] = 1;
        }
		dijkstra();
        if (dist[b] == inf)
            printf("-1\n");
        else
            printf("%d\n", dist[b]);
    }
    return 0;
}

bfs:
#include<iostream>
#include<cstring>
using namespace std;

typedef struct {
    int floor;
    int time;
} Q;
int go[201];
int visit[201];
Q queue[10000];

int bfs(int n, int a, int b) {
    memset(visit, 0, sizeof (visit));
    memset(queue, 0, sizeof (queue));
    int qhead = 0;
    int qtail = 0;
    queue[qtail].floor = a;
    queue[qtail].time = 0;
    visit[queue[qhead].floor] = 1;
    qtail++;
    while (qhead < qtail) {
        if ((queue[qhead].floor + go[queue[qhead].floor] >= 1)
                && (queue[qhead].floor + go[queue[qhead].floor] <= n)
                && !visit[queue[qhead].floor + go[queue[qhead].floor]]) {
            if (queue[qhead].floor + go[queue[qhead].floor] == b)
                return queue[qhead].time + 1;
            visit[queue[qhead].floor + go[queue[qhead].floor]] = 1;
            Q tmp;
            tmp.floor = queue[qhead].floor + go[queue[qhead].floor];
            tmp.time = queue[qhead].time + 1;
            queue[qtail++] = tmp;
        }
        if ((queue[qhead].floor - go[queue[qhead].floor] >= 1)
                && (queue[qhead].floor - go[queue[qhead].floor] <= n)
                && !visit[queue[qhead].floor - go[queue[qhead].floor]]) {
            if (queue[qhead].floor - go[queue[qhead].floor] == b)
                return queue[qhead].time + 1;
            visit[queue[qhead].floor - go[queue[qhead].floor]] = 1;
            Q tmp;
            tmp.floor = queue[qhead].floor - go[queue[qhead].floor];
            tmp.time = queue[qhead].time + 1;
            queue[qtail++] = tmp;
        }
        qhead++;
    }
    return -1;
}

int main(void) {
    int n, a, b;
    while (cin >> n, n) {
        cin >> a >> b;
        for (int i = 1; i <= n; i++)
            cin >> go[i];
        if (a == b)
            cout << '0' << endl;
        else
            cout << bfs(n, a, b) << endl;
    }
    return 0;
}



下载方式:https://pan.quark.cn/s/b4d8292ba69a 在构建食品品牌的市场整合营销推广方案时,我们必须首先深入探究品牌的由来、顾客的感知以及市场环境。 此案例聚焦于一款名为“某饼干产品”的食品,该产品自1998年进入河南市场以来,经历了销售业绩的波动。 1999至2000年期间,其销售额取得了明显的上升,然而到了2001年则出现了下滑。 在先前的宣传活动中,品牌主要借助大型互动活动如ROAD SHOW来吸引顾客,但收效甚微,这揭示了宣传信息与顾客实际认同感之间的偏差。 通过市场环境剖析,我们了解到消费者对“3+2”苏打夹心饼干的印象是美味、时尚且充满活力,但同时亦存在口感腻、价位偏高、饼身坚硬等负面评价。 实际上,该产品可以塑造为兼具美味、深度与创新性的休闲食品,适宜在多种情境下分享。 这暗示着品牌需更精确地传递产品特性,同时消解消费者的顾虑。 在策略制定上,我们可考虑将新产品与原有的3+2苏打夹心进行协同推广。 这种策略的长处在于能够借助既有产品的声誉和市场占有率,同时通过新产品的加入,刷新品牌形象,吸引更多元化的消费群体。 然而,这也可能引发一些难题,例如如何合理分配新旧产品间的资源,以及如何保障新产品的独特性和吸引力不被既有产品所掩盖。 为了提升推广成效,品牌可以实施以下举措:1. **定位修正**:基于消费者反馈,重新确立产品定位,突出其美味、创新与共享的特性,减少消费者感知的缺陷。 2. **创新宣传**:宣传信息应与消费者的实际体验相契合,运用更具魅力的创意手段,例如叙事式营销,让消费者体会到产品带来的愉悦和情感共鸣。 3. **渠道选择**:在目标消费者常去的场所开展活动,例如商业中心、影院或在线平台,以提高知名度和参与度。 4. **媒体联...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值