codeforces日记371e

本文介绍了一种算法,用于从现有地铁站中选择最优的k个站点以最小化乘客平均通勤时间。通过排序和计算不同站点组合间的距离,该算法能够有效地找到最佳方案。

题目:

E. Subway Innovation
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Berland is going through tough times — the dirt price has dropped and that is a blow to the country's economy. Everybody knows that Berland is the top world dirt exporter!

The President of Berland was forced to leave only k of the currently existing n subway stations.

The subway stations are located on a straight line one after another, the trains consecutively visit the stations as they move. You can assume that the stations are on the Ox axis, the i-th station is at point with coordinate xi. In such case the distance between stations iand j is calculated by a simple formula |xi - xj|.

Currently, the Ministry of Transport is choosing which stations to close and which ones to leave. Obviously, the residents of the capital won't be too enthusiastic about the innovation, so it was decided to show the best side to the people. The Ministry of Transport wants to choose such k stations that minimize the average commute time in the subway!

Assuming that the train speed is constant (it is a fixed value), the average commute time in the subway is calculated as the sum of pairwise distances between stations, divided by the number of pairs (that is ) and divided by the speed of the train.

Help the Minister of Transport to solve this difficult problem. Write a program that, given the location of the stations selects such kstations that the average commute time in the subway is minimized.

Input

The first line of the input contains integer n (3 ≤ n ≤ 3·105) — the number of the stations before the innovation. The second line contains the coordinates of the stations x1, x2, ..., xn ( - 108 ≤ xi ≤ 108). The third line contains integer k (2 ≤ k ≤ n - 1) — the number of stations after the innovation.

The station coordinates are distinct and not necessarily sorted.

Output

Print a sequence of k distinct integers t1, t2, ..., tk (1 ≤ tj ≤ n) — the numbers of the stations that should be left after the innovation in arbitrary order. Assume that the stations are numbered 1 through n in the order they are given in the input. The number of stations you print must have the minimum possible average commute time among all possible ways to choose k stations. If there are multiple such ways, you are allowed to print any of them.

Sample test(s)
input
3
1 100 101
2
output
2 3 
Note

In the sample testcase the optimal answer is to destroy the first station (with x = 1). The average commute time will be equal to 1 in this way.

集体思路:

将输入的车站以及位置用pair保存,按位置进行排序。可知所求的必为排序后连续的k个车站,计算前k个车站所有对的距离之和(后发现不用计算即代码中注释掉的,只用看距离的大小即可),根据前一个计算后推一个车站的距离之和,记录最小值并输出。

AC代码:

#include<iostream>
#include<algorithm>
using namespace std;
pair<int, int> x[300008];
long long S[300008],i,n,k,m,mi,f;

int main() {
 for (cin>>n; i<n; i++) {
  cin >> x[i].first;
  x[i].second = i+1;
 }
 cin>>k; k--;
 sort(x, x+n);
 for (i=1; i<n; i++) S[i] = S[i-1] + x[i].first;
 f=0;
 //for (i=1; i<=k; i++) f += x[i].first * i - S[i-1];
 for (m=f,i=1; i<n-k; i++)
  if ((f += x[i+k].first*k-2*S[i+k-1]+2*S[i-1]+x[i-1].first*k) < m) m=f,mi=i;
 for (i=0; i<=k; i++)
  cout << x[mi+i].second << " ";
}

根据原作 https://pan.quark.cn/s/459657bcfd45 的源码改编 Classic-ML-Methods-Algo 引言 建立这个项目,是为了梳理和总结传统机器学习(Machine Learning)方法(methods)或者算法(algo),和各位同仁相互学习交流. 现在的深度学习本质上来自于传统的神经网络模型,很大程度上是传统机器学习的延续,同时也在不少时候需要结合传统方法来实现. 任何机器学习方法基本的流程结构都是通用的;使用的评价方法也基本通用;使用的一些数学知识也是通用的. 本文在梳理传统机器学习方法算法的同时也会顺便补充这些流程,数学上的知识以供参考. 机器学习 机器学习是人工智能(Artificial Intelligence)的一个分支,也是实现人工智能最重要的手段.区别于传统的基于规则(rule-based)的算法,机器学习可以从数据中获取知识,从而实现规定的任务[Ian Goodfellow and Yoshua Bengio and Aaron Courville的Deep Learning].这些知识可以分为四种: 总结(summarization) 预测(prediction) 估计(estimation) 假想验证(hypothesis testing) 机器学习主要关心的是预测[Varian在Big Data : New Tricks for Econometrics],预测的可以是连续性的输出变量,分类,聚类或者物品之间的有趣关联. 机器学习分类 根据数据配置(setting,是否有标签,可以是连续的也可以是离散的)和任务目标,我们可以将机器学习方法分为四种: 无监督(unsupervised) 训练数据没有给定...
本系统采用微信小程序作为前端交互界面,结合Spring Boot与Vue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性与扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理与数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试与优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性与可维护性,遵循企业级开发标准,确保了系统的长期稳定运行与后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值