Mapreduce和YARN

本文探讨了Hadoop和MapReduce在处理大规模数据集方面的应用,重点介绍了MapReduce的编程模型,以及Hadoop如何通过其分布式计算框架实现高效的数据处理。文章详细解释了MapReduce的Map和Reduce操作,以及Hadoop的JobTracker和TaskTracker如何协同工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hadoop 的最常见用法之一是 Web 搜索。虽然它不是唯一的软件框架应用程序,但作为一个并行数据处理引擎,它的表现非常突出。Hadoop 最有趣的方面之一是 Map and Reduce 流程,它受到Google开发的启发。这个流程称为创建索引,它将 Web爬行器检索到的文本 Web 页面作为输入,并且将这些页面上的单词的频率报告作为结果。然后可以在整个 Web 搜索过程中使用这个结果从已定义的搜索参数中识别内容。

MapReduce
最简单的 MapReduce应用程序至少包含 3 个部分:一个 Map 函数、一个 Reduce 函数和一个 main 函数。main 函数将作业控制和文件输入/输出结合起来。在这点上,Hadoop 提供了大量的接口和抽象类,从而为 Hadoop应用程序开发人员提供许多工具,可用于调试和性能度量等。
MapReduce 本身就是用于并行处理大数据集的软件框架。MapReduce 的根源是函数性编程中的 map 和 reduce 函数。它由两个可能包含有许多实例(许多 Map 和 Reduce)的操作组成。Map 函数接受一组数据并将其转换为一个键/值对列表,输入域中的每个元素对应一个键/值对。Reduce 函数接受 Map 函数生成的列表,然后根据它们的键(为每个键生成一个键/值对)缩小键/值对列表。
这里提供一个示例,帮助您理解它。假设输入域是 one small step for man,one giant leap for mankind。在这个域上运行 Map 函数将得出以下的键/值对列表:

(one,1) (small,1) (step,1) (for,1) (man,1) (one,1) (giant,1) (leap,1) (for,1) (mankind,1)

如果对这个键/值对列表应用 Reduce 函数,将得到以下一组键/值对:

(one,2) (small,1) (step,1) (for,2) (man,1)(giant,1) (leap,1) (mankind,1)

结果是对输入域中的单词进行计数,这无疑对处理索引十分有用。但是,假设有两个输入域,第一个是 one small step for man,第二个是 one giant leap for mankind。您可以在每个域上执行 Map 函数和 Reduce 函数,然后将这两个键/值对列表应用到另一个 Reduce 函数,这时得到与前面一样的结果。换句话说,可以在输入域并行使用相同的操作,得到的结果是一样的,但速度更快。这便是 MapReduce 的威力;它的并行功能可在任意数量的系统上使用。

Hadoop

它是如何实现这个功能的?一个代表客户机在单个主系统上启动的 MapReduce应用程序称为 JobTracker。类似于 NameNode,它是 Hadoop 集群中惟一负责控制 MapReduce应用程序的系统。在应用程序提交之后,将提供包含在 HDFS 中的输入和输出目录。JobTracker 使用文件块信息(物理量和位置)确定如何创建其他 TaskTracker 从属任务。MapReduce应用程序被复制到每个出现输入文件块的节点。将为特定节点上的每个文件块创建一个惟一的从属任务。每个 TaskTracker 将状态和完成信息报告给 JobTracker。

Hadoop 的这个特点非常重要,因为它并没有将存储移动到某个位置以供处理,而是将处理移动到存储。这通过根据集群中的节点数调节处理,因此支持高效的数据处理。

Hadoop是一种分布式数据和计算的框架。它很擅长存储大量的半结构化的数据集。数据可以随机存放,所以一个磁盘的失败并不会带来数据丢失。Hadoop也非常擅长分布式计算——快速地跨多台机器处理大型数据集合。
MapReduce是处理大量半结构化数据集合的编程模型。编程模型是一种处理并结构化特定问题的方式。例如,在一个关系数据库中,使用一种集合语言执行查询,如SQL。告诉语言想要的结果,并将它提交给系统来计算出如何产生计算。还可以用更传统的语言(C++,Java),一步步地来解决问题。这是两种不同的编程模型,MapReduce就是另外一种。
MapReduce和Hadoop是相互独立的,实际上又能相互配合工作得很好。

MapReduce是一种编程模型一个分布式计算框架,由Google开发并开源,主要用于大规模数据集的并行处理。它将复杂的计算任务分解成一系列简单的“map”“reduce”步骤,使得数据可以在集群上分布式地处理。Map阶段对输入数据进行分割,应用用户提供的映射函数;Reduce阶段则将中间结果合并,应用用户指定的聚合函数。YARN(Yet Another Resource Negotiator)是Apache Hadoop项目的一个重要组件,全称为“ Yet Another Node Manager”,是Hadoop 2.x版本引入的新资源管理器。 YARN的主要功能是将Hadoop的计算资源抽象成统一的资源池,它替代了早期版本中的单一进程ResourceManager。YARN的设计允许系统同时运行多个应用程序,并能够动态调整资源分配,提高了集群的利用率灵活性。YARN包括三个关键组件: - **NodeManager**: 运行在每个节点上的进程,负责监控本地资源,管理调度容器(container)给各个申请资源的应用。 - **ResourceManager (RM)**: 负责全局的资源调度,协调跨节点的资源分配,以及维护队列信息。 - **ApplicationMaster (AM)**: 每个MapReduce作业启动后都会创建一个AM,它与RM通信,请求所需的资源,然后控制作业的具体执行过程。 简而言之,MapReduce是处理大数据的任务,而YARN则是提供了一个可扩展的平台来支持MapReduce其他计算框架(如Spark)在Hadoop环境下的运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值