简介
程序中的所有数在计算机内存中都是以二进制的形式储存的。位运算说穿了,就是直接对整数在内存中的二进制位进行操作。比如,and运算本来是一个逻辑运算符,但整数与整数之间也可以进行and运算。举个例子,6的二进制是110,11的二进制是1011,那么6 and 11的结果就是2,它是二进制对应位进行逻辑运算的结果(0表示False,1表示True,空位都当0处理)。
运算符号
下面的a和b都是整数类型,则:
含义 | Pascal语言 | C语言 | Java |
---|---|---|---|
按位与 | a and b | a & b | a & b |
按位或 | a or b | a | b | a | b |
按位异或 | a xor b | a ^ b | a ^ b |
按位取反 | not a | ~a | ~a |
左移 | a shl b | a << b | a << b |
带符号右移 | a shr b | a >> b | a >> b |
无符号右移 | a>>> b |
注意C中的逻辑运算和位运算符号是不同的。520|1314=1834,但520||1314=1,因为逻辑运算时520和1314都相当于True。同样的,!a和~a也是有区别的。
运算说明
and运算
and运算通常用于二进制取位操作,例如一个数 and 1的结果就是取二进制的最末位。这可以用来判断一个整数的奇偶,二进制的最末位为0表示该数为偶数,最末位为1表示该数为奇数。
相同位的两个数字都为1,则为1;若有一个不为1,则为0。
00101
&
11100
=
00100
a = 7777;
b = 1;
printf("a and b = %d \n",a & b);
a = 77776;
b = 1;
printf("a and b = %d \n",a & b);
or运算
or运算通常用于二进制特定位上的无条件赋值,例如一个数or 1的结果就是把二进制最末位强行变成1。如果需要把二进制最末位变成0,对这个数or 1之后再减一就可以了,其实际意义就是把这个数强行变成最接近的偶数。
相同位只要一个为1即为1。
00101
or
11100
==
11101
a = 66;
b = 1;
printf("a or b = %d \n",a | b); ---67
xor运算
异或的符号是^。按位异或运算, 对等长二进制模式按位或二进制数的每一位执行逻辑按位异或操作. 操作的结果是如果某位不同则该位为1, 否则该位为0.
xor运算的逆运算是它本身,也就是说两次异或同一个数最后结果不变,即(a xor b) xor b = a。xor运算可以用于简单的加密,比如我想对我MM说1314520,但怕别人知道,于是双方约定拿我的生日19880516作为密钥。1314520 xor 19880516 = 20665500,我就把20665500告诉MM。MM再次计算20665500 xor 19880516的值,得到1314520,于是她就明白了我的企图。
相同位不同则为1,相同则为0。
00101
11100
xor
=
11001
not运算
not运算的定义是把内存中的0和1全部取反。使用not运算时要格外小心,你需要注意整数类型有没有符号。如果not的对象是无符号整数(不能表示负数),那么得到的值就是它与该类型上界的差,因为无符号类型的数是用00到$FFFF依次表示的。下面的两个程序(仅语言不同)均返回65435。
#include<stdio.h>
int main()
{
unsigned short a=100;
a=~a;
printf("%d\n",a);
return 0;
}
如果not的对象是有符号的整数,情况就不一样了
<< 运算
a << b就表示把a转为二进制后左移b位(在后面添b个0)。例如100的二进制为1100100,而110010000转成十进制是400,那么100 << 2 = 400。可以看出,a << b的值实际上就是a乘以2的b次方,因为在二进制数后添一个0就相当于该数乘以2。
通常认为a << 1比a * 2更快,因为前者是更底层一些的操作。因此程序中乘以2的操作请尽量用左移一位来代替。
定义一些常量可能会用到<<运算。你可以方便地用1 << 16 - 1来表示65535。很多算法和数据结构要求数据规模必须是2的幂,此时可以用<<来定义Max_N等常量。
int d = 100;
printf("d << 2 = %d \n",d << 2); -- 400
>>
和>>相似,a >>b表示二进制右移b位(去掉末b位),相当于a除以2的b次方(取整)。我们也经常用>>1来代替div 2,比如二分查找、堆的插入操作等等。想办法用shr代替除法运算可以使程序效率大大提高。最大公约数的二进制算法用除以2操作来代替慢得出奇的mod运算,效率可以提高60%。
优先级
优先级 | 符号 |
---|---|
1 | ~ |
2 | << >> |
3 | & |
4 | ^ |
5 | | |
6 | &=、^=、|=、<<=、>>= |
位运算交换
交换int
#include<cstdio>
#include<cstdlib>
int main()
{
int a,b;
scanf("%d %d",&a,&b);
a=a^b;
b=a^b;
a=a^b;
printf("%d %d\n",a,b);
}
储存
我们前面所说的位运算都没有涉及负数,都假设这些运算是在unsigned/word类型(只能表示正数的整型)上进行操作。但计算机如何处理有正负符号的整数类型呢?下面两个程序都是考察16位整数的储存方式(只是语言不同)。
两个程序的输出均为0 1 -2 -1 32767 -32768。其中前两个数是内存值最小的数,中间两个数则是内存值最大的数,最后输出的两个数是正数与负数的分界处。由此你可以清楚地看到计算机是如何储存一个整数的:计算机用00到7FFF依次表示0到32767的数,剩下的8000到$FFFF依次表示-32768到-1的数。32位有符号整数的储存方式也是类似的。稍加注意你会发现,二进制的第一位是用来表示正负号的,0表示正,1表示负。这里有一个问题:0本来既不是正数,也不是负数,但它占用了00的位置,因此有符号的整数类型范围中正数个数比负数少一个。对一个有符号的数进行not运算后,最高位的变化将导致正负颠倒,并且数的绝对值会差1。也就是说,not a实际上等于-a-1(或-a=not a+1)。这种整数储存方式叫做“补码”(正数的补码和原码相同,负数的补码是该数的绝对值的二进制形式,按位取反后再加1)。