# train_num = 4000
# test_num = 800
#batch_size = 100
# epoch = 30
# test_iter = test_num / batch_size
test_iter: 8# 每全部训练一次,测试一次
# test_interval = train_num / batch_size
test_interval: 40
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policylr_policy: "inv"
gamma: 0.0001
power: 0.75
# 每训练10次,显示一次
display: 10
# max_iter = epoch * test_interval
max_iter: 1200
# 完整训练一次,存一次model
# snapshot = train_num / batch_size
snapshot: 40
# model储存路径
# solver mode: CPU or GPU
solver_mode: CPU
本文详细介绍了机器学习训练过程中的关键参数设置,包括批量大小、迭代次数、学习率策略等,并解释了这些参数如何影响模型训练效果。
609

被折叠的 条评论
为什么被折叠?



