机器学习常见算法汇总

本文介绍了机器学习中的主要算法分类,包括监督式学习、非监督式学习、半监督式学习及强化学习等不同学习方式,并列举了各类算法的具体例子。


学习方式

  根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。

  监督式学习:

  在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network)

  非监督式学习:

  在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。

  半监督式学习:

  在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。

  强化学习:

  在这种学习模式下,输入数据作为对模型的反馈,不像监督模型那样,输入数据仅仅是作为一个检查模型对错的方式,在强化学习下,输入数据直接反馈到模型,模型必须对此立刻作出调整。常见的应用场景包括动态系统以及机器人控制等。常见算法包括Q-Learning以及时间差学习(Temporal difference learning)

  在企业数据应用的场景下, 人们最常用的可能就是监督式学习和非监督式学习的模型。 在图像识别等领域,由于存在大量的非标识的数据和少量的可标识数据, 目前半监督式学习是一个很热的话题。 而强化学习更多的应用在机器人控制及其他需要进行系统控制的领域。

  算法类似性

  根据算法的功能和形式的类似性,我们可以把算法分类,比如说基于树的算法,基于神经网络的算法等等。当然,机器学习的范围非常庞大,有些算法很难明确归类到某一类。而对于有些分类来说,同一分类的算法可以针对不同类型的问题。这里,我们尽量把常用的算法按照最容易理解的方式进行分类。

  回归算法

  回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。在机器学习领域,人们说起回归,有时候是指一类问题,有时候是指一类算法,这一点常常会使初学者有所困惑。常见的回归算法包括:最小二乘法(Ordinary Least Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(Multivariate Adaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing)

  基于实例的算法

  基于实例的算法常常用来对决策问题建立模型,这样的模型常常先选取一批样本数据,然后根据某些近似性把新数据与样本数据进行比较。通过这种方式来寻找最佳的匹配。因此,基于实例的算法常常也被称为“赢家通吃”学习或者“基于记忆的学习”。常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM)

  正则化方法

  正则化方法是其他算法(通常是回归算法)的延伸,根据算法的复杂度对算法进行调整。正则化方法通常对简单模型予以奖励而对复杂算法予以惩罚。常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net)。

  决策树学习

  决策树算法根据数据的属性采用树状结构建立决策模型, 决策树模型常常用来解决分类和回归问题。常见的算法包括:分类及回归树(Classification And Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM)

  贝叶斯方法

  贝叶斯方法算法是基于贝叶斯定理的一类算法,主要用来解决分类和回归问题。常见算法包括:朴素贝叶斯算法,平均单依赖估计(Averaged One-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN)。

  基于核的算法

  基于核的算法中最着名的莫过于支持向量机(SVM)了。 基于核的算法把输入数据映射到一个高阶的向量空间, 在这些高阶向量空间里, 有些分类或者回归问题能够更容易的解决。 常见的基于核的算法包括:支持向量机(Support Vector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等。

  聚类算法

  聚类,就像回归一样,有时候人们描述的是一类问题,有时候描述的是一类算法。聚类算法通常按照中心点或者分层的方式对输入数据进行归并。所以的聚类算法都试图找到数据的内在结构,以便按照最大的共同点将数据进行归类。常见的聚类算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM)。

  关联规则学习

  关联规则学习通过寻找最能够解释数据变量之间关系的规则,来找出大量多元数据集中有用的关联规则。常见算法包括 Apriori算法和Eclat算法等。

  人工神经网络

  人工神经网络算法模拟生物神经网络,是一类模式匹配算法。通常用于解决分类和回归问题。人工神经网络是机器学习的一个庞大的分支,有几百种不同的算法。(其中深度学习就是其中的一类算法,我们会单独讨论),重要的人工神经网络算法包括:感知器神经网络(Perceptron Neural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-Organizing Map, SOM)。学习矢量量化(Learning Vector Quantization, LVQ)

  深度学习

  深度学习算法是对人工神经网络的发展。 在近期赢得了很多关注, 特别是 百度也开始发力深度学习后, 更是在国内引起了很多关注。  在计算能力变得日益廉价的今天,深度学习试图建立大得多也复杂得多的神经网络。很多深度学习的算法是半监督式学习算法,用来处理存在少量未标识数据的大数据集。常见的深度学习算法包括:受限波尔兹曼机(Restricted Boltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders)。

  降低维度算法

  像聚类算法一样,降低维度算法试图分析数据的内在结构,不过降低维度算法是以非监督学习的方式试图利用较少的信息来归纳或者解释数据。这类算法可以用于高维数据的可视化或者用来简化数据以便监督式学习使用。常见的算法包括:主成份分析(Principle Component Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon映射,多维尺度(Multi-Dimensional Scaling, MDS),  投影追踪(Projection Pursuit)等。

  集成算法

  集成算法用一些相对较弱的学习模型独立地就同样的样本进行训练,然后把结果整合起来进行整体预测。集成算法的主要难点在于究竟集成哪些独立的较弱的学习模型以及如何把学习结果整合起来。这是一类非常强大的算法,同时也非常流行。常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging), AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(Gradient Boosting Machine, GBM),随机森林(Random Forest)。

转自:http://www.smartcitychina.cn/zhyy/2014-12/3985.html

### 常见机器学习算法及其应用场景 #### 一、监督学习算法 监督学习是一种通过已知输入和输出的数据来训练模型的方法。以下是几种常见的监督学习算法: 1. **线性回归** - 应用场景:适用于目标变量为连续数值的情况,例如预测房价、股票价格或销售量等[^5]。 2. **逻辑回归** - 应用场景:主要用于二分类问题,如垃圾邮件识别、疾病诊断等[^3]。 3. **支持向量机 (SVM)** - 应用场景:适合于高维度空间中的分类任务,尤其在文本分类领域表现优异。 4. **决策树** - 应用场景:广泛应用于各种分类和回归任务,因其易于解释而受到青睐。 5. **随机森林** - 应用场景:能够有效减少过拟合的风险,常用于信用评分、风险评估等领域。 6. **梯度提升方法 (Gradient Boosting)** - 应用场景:包括 XGBoost 和 LightGBM 等工具,在许多比赛中表现出色,特别适合需要高精度的任务。 7. **神经网络** - 应用场景:可用于多种类型的监督学习任务,尤其是复杂的模式识别问题,比如图像分类、语音识别等[^2]。 #### 二、无监督学习算法 无监督学习旨在从未标记的数据集中提取结构化信息。以下是一些典型的无监督学习算法: 1. **K均值聚类 (K-Means Clustering)** - 应用场景:客户细分、市场分析以及文档分组等任务中非常普遍。 2. **层次聚类 (Hierarchical Clustering)** - 应用场景:生物信息学中的基因表达数据分析,以及其他需要构建嵌套群集关系的情境下适用。 3. **DBSCAN** - 应用场景:擅长处理具有噪声的空间数据,典型例子包括异常检测、地理数据分析及图像分割等[^4]。 #### 三、集成学习方法 集成学习通过组合多个基础估计器来改进泛化能力并降低偏差或方差。主要技术如下: 1. **提升法 (Boosting)** - 特点:逐步纠正错误样本权重分配的过程,最终形成强分类器。 2. **自助聚合 (Bagging)** - 特点:通过对原始数据抽样多次建立独立子模型再汇总结果的方式增强稳定性。 3. **堆叠法 (Stacking)** - 特点:利用元学习者综合初级学习者的预测作为新特征来进行二次建模。 #### 四、其他重要概念和技术 除了上述经典算法外,还有一些新兴技术和理论框架也值得关注,例如迁移学习、强化学习等。这些高级主题通常涉及更深层次的理解与实践操作。 ```python from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier import numpy as np # 示例代码展示如何初始化部分常用算法实例对象 linear_reg = LinearRegression() logistic_reg = LogisticRegression() svm_classifier = SVC(kernel='rbf') decision_tree_clf = DecisionTreeClassifier(max_depth=5) random_forest_clf = RandomForestClassifier(n_estimators=100) gradient_boosting_clf = GradientBoostingClassifier(learning_rate=0.1) X_train = np.random.rand(100, 10) # 随机生成训练数据 y_train = np.random.randint(0, 2, size=(100,)) model = logistic_reg.fit(X_train, y_train) # 训练逻辑回归模型 ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值