机器学习——数据清洗与特征选择

本文讨论了数据清洗在机器学习中的重要性及其对模型效果的影响。实际工作中,数据清洗占据了开发过程的大比例时间,直接关系到最终结论的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据清洗

数据清洗(data cleaning)是在机器学习过程中一个不可缺少的环节,其数据的清洗结果直接关系到模型效果以及最终的结论。在实际的工作中,数据清洗通常占开发过程的50%-80%左右的时间。







































评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值