uva 529 - Addition Chains

本文介绍了解决UVA529问题的一种方法——使用迭代加深搜索算法。该算法首先确定解决这个问题所需的最少步骤,并通过剪枝技术提高搜索效率。文章提供了完整的C++代码实现。

此题使用迭代加深搜索。。

注意:1.首先确定最少的步数

2.剪枝:获得当前数t之后。。。看  t * 2(的maxd -d次方)能不能大于n,反之则不用再dfs下去了。


//
//  main.cpp
//  uva   529 - Addition Chains
//
//  Created by XD on 15/8/8.
//  Copyright (c) 2015年 XD. All rights reserved.
//

#include <iostream>
#include <string>
#include <queue>
#include <stack>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include<vector>
#include <string.h>
#include <string>
#include <algorithm>
#include <set>
#include <map>
#include <cstdio>
using namespace std ;
int n ;
int maxd ;
int ans[1000] ;

int dfs(int d)
{
    if (d == maxd) {
        if (ans[d-1]==n) {
            return 1 ;
        }
        return 0 ;
    }
    for (int i = 0; i < d; i++) {
        for (int j = i ; j < d; j++) {
            if (ans[i] +ans[j] > ans[d-1] && ans[i] + ans[j] <=  n ) {
                ans[d] = ans[i] + ans[j] ;
                int sum = ans[d] ;
                for (int t = d +1; t <=maxd; t++) {
                    sum *= 2  ;
                }
                if (sum < n ) {
                    return 0 ;
                }
                if (dfs(d + 1)) {
                    return  1;
                }
            }
        }
    }
    return  0 ;
}
void solved()
{
    int len = (int)log2(n) ;
    for (maxd = len ;; maxd++) {
        ans[0]  =1 ;
        if (dfs(1)) {
            for (int i = 0; i  < maxd-1; i++) {
                printf("%d " , ans[i]) ;
            }
            printf("%d\n" , ans[maxd-1]) ;
            return ;
        }
    }
    
    
    
}
int main(int argc, const char * argv[]) {
    
    while (scanf("%d" ,&n)==1&& n!= 0) {
        solved() ;
    }
    
    
    return 0;
}


内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
在游戏开发或图形编程中,模拟绳索、链条或其他弯曲线条效果是一个常见的需求。**Curved Lines System - Ropes, Chains and more** 是一个 Unity 插件,专为实现此类效果而设计。该插件支持 2D 和 3D 环境中的动态绳索和链条模拟,适用于游戏开发中的物理互动场景,例如吊桥、缆绳、动态摆动机制等。 插件版本 **1.03** 提供了基本的 API 接口和可视化工具,开发者可以通过 Unity 编辑器直接创建和调整曲线路径,并将物理组件附加到曲线上以实现动态行为。其核心功能包括: - **基于样条的曲线生成**:使用贝塞尔曲线或 Catmull-Rom 样条来定义绳索或链条的路径。 - **物理集成**:自动为曲线生成刚体和关节组件,使其能够与 Unity 的物理引擎交互。 - **可视化编辑**:在 Unity 编辑器中实时调整曲线控制点,并预览物理效果。 - **性能优化**:适用于移动端和桌面端,具备良好的性能表现[^1]。 插件的使用通常包括以下几个步骤: 1. **导入插件**:将插件包导入 Unity 项目中。 2. **创建曲线对象**:通过编辑器工具创建 Curved Line 对象,并调整控制点。 3. **添加物理组件**:通过插件提供的选项自动为曲线添加 Rigidbody 和 Hinge Joint 或 Fixed Joint。 4. **脚本控制**:使用插件提供的 API 实时控制曲线的形态或物理状态。 以下是一个简单的脚本示例,用于动态更新曲线控制点: ```csharp using UnityEngine; using CurvedLines; public class UpdateCurve : MonoBehaviour { public CurvedLineRenderer curvedLine; public Transform[] controlPoints; void Update() { // 更新曲线的控制点 curvedLine.UpdatePoints(GetBezierPoints()); } Vector3[] GetBezierPoints() { // 实现贝塞尔曲线计算 // 返回计算后的点数组 return new Vector3[] { /* 计算结果 */ }; } } ``` 关于插件的 **文档和使用指南**,官方通常提供 PDF 格式的用户手册以及 Unity 内置的示例场景。用户可以通过插件的 **Asset Store 页面** 或 **开发者支持论坛** 获取最新版本的文档。插件的 **下载链接** 通常位于 Unity Asset Store 或开发者提供的独立下载页面上。 若需获取 **Curved Lines System - Ropes, Chains and more 1.03 的下载包或文档**,建议访问 Unity Asset Store 中的插件页面或联系插件作者以获得官方支持材料。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值