调整hive去重的SQL,采用collect_set去重,根据唯一值MD5去重,效果貌似可以提升,但是遇到错误:
Task with the most failures(4):
-----
Task ID:
task_1458621585996_246153_r_000000
URL:
http://bis-newnamenode-s-01:8088/taskdetails.jsp?jobid=job_1458621585996_246153&tipid=task_1458621585996_246153_r_000000
-----
Diagnostic Messages for this Task:
Error: org.apache.hadoop.mapreduce.task.reduce.Shuffle$ShuffleError: error in shuffle in fetcher#3
at org.apache.hadoop.mapreduce.task.reduce.Shuffle.run(Shuffle.java:121)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:380)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:162)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1491)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:157)
Caused by: java.lang.OutOfMemoryError: Java heap space
at org.apache.hadoop.io.BoundedByteArrayOutputStream.<init>(BoundedByteArrayOutputStream.java:56)
at org.apache.hadoop.io.BoundedByteArrayOutputStream.<init>(BoundedByteArrayOutputStream.java:46)
at org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput.<init>(InMemoryMapOutput.java:63)
at org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl.unconditionalReserve(MergeManagerImpl.java:297)
at org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl.reserve(MergeManagerImpl.java:287)
at org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyMapOutput(Fetcher.java:411)
at org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyFromHost(Fetcher.java:341)
at org.apache.hadoop.mapreduce.task.reduce.Fetcher.run(Fetcher.java:165)
FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask
MapReduce Jobs Launched:
Job 0: Map: 420 Reduce: 123 Cumulative CPU: 253561.73 sec HDFS Read: 122356614622 HDFS Write: 189448082929 FAIL
Total MapReduce CPU Time Spent: 2 days 22 hours 26 minutes 1 seconds 730 msec
解决可以参照如下:
转自:http://blog.youkuaiyun.com/dslztx/article/details/46445725
1、错误描述
在运行MapReduce任务的时候,出现如下错误:Error: org.apache.hadoop.mapreduce.task.reduce.Shuffle$ShuffleError: error in shuffle in fetcher#1
at org.apache.hadoop.mapreduce.task.reduce.Shuffle.run(Shuffle.java:134)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:376)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:167)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:396)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1556)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:162)
Caused by: java.lang.OutOfMemoryError: Java heap space
at org.apache.hadoop.io.BoundedByteArrayOutputStream.<init>(BoundedByteArrayOutputStream.java:56)
at org.apache.hadoop.io.BoundedByteArrayOutputStream.<init>(BoundedByteArrayOutputStream.java:46)
at org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput.<init>(InMemoryMapOutput.java:63)
at org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl.unconditionalReserve(MergeManagerImpl.java:297)
at org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl.reserve(MergeManagerImpl.java:287)
at org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyMapOutput(Fetcher.java:411)
at org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyFromHost(Fetcher.java:341)
at org.apache.hadoop.mapreduce.task.reduce.Fetcher.run(Fetcher.java:165)
2、解决方案
根据《Hadoop:The Definitive Guide 4th Edition》所述(P203-219),map任务和reduce任务之间要经过一个shuffle过程,该过程复制map任务的输出作为reduce任务的输入
具体的来说,shuffle过程的输入是:map任务的输出文件,它的输出接收者是:运行reduce任务的机子上的内存buffer,并且shuffle过程以并行方式运行
参数mapreduce.reduce.shuffle.input.buffer.percent控制运行reduce任务的机子上多少比例的内存用作上述buffer(默认值为0.70),参数mapreduce.reduce.shuffle.parallelcopies控制shuffle过程的并行度(默认值为5)
那么"mapreduce.reduce.shuffle.input.buffer.percent" * "mapreduce.reduce.shuffle.parallelcopies" 必须小于等于1,否则就会出现如上错误
因此,我将mapreduce.reduce.shuffle.input.buffer.percent设置成值为0.1,就可以正常运行了(设置成0.2,还是会抛同样的错)
另外,可以发现如果使用两个参数的默认值,那么两者乘积为3.5,大大大于1了,为什么没有经常抛出以上的错误呢?
1)首先,把默认值设为比较大,主要是基于性能考虑,将它们设为比较大,可以大大加快从map复制数据的速度
2)其次,要抛出如上异常,还需满足另外一个条件,就是map任务的数据一下子准备好了等待shuffle去复制,在这种情况下,就会导致shuffle过程的“线程数量”和“内存buffer使用量”都是满负荷的值,自然就造成了内存不足的错误;而如果map任务的数据是断断续续完成的,那么没有一个时刻shuffle过程的“线程数量”和“内存buffer使用量”是满负荷值的,自然也就不会抛出如上错误
另外,如果在设置以上参数后,还是出现错误,那么有可能是运行Reduce任务的进程的内存总量不足,可以通过mapred.child.Java.opts参数来调节,比如设置mapred.child.java.opts=-Xmx2024m