The overview of Deep Learning

本文探讨了深度学习在解决计算机视觉难题中的历史发展与关键挑战,从传统手工特征提取到利用强大的GPU进行自动特征学习。介绍了基本单元、自编码器、卷积神经网络等网络结构,并提及生成对抗网络的概念。

Preface

This article focus on the deep learning in computer vision areas organial by me. If you want to copy something, please referring this. Thank you.

1 History

The main challenges of deep learning are to solve the tasks which can be solved easily by human beings but hardly for computers.
At begining, features be got by traditional way, just like getting the color and texture of the object picture to make the computer can get the ROI. It’s called engineered handcraft feature by model pattern.
By the ability of the computation growing up and the GPU get more powerful use, there is a possibility to make sample units to compose the most complex model with ANN.

2 Networks

2.1 Basic unit

So let’s talk about the most excited part of the most basic function of the deep learning as the basic unit of the net.
y=f(wx+b) y=f(wx+b) y=f(wx+b)

x is the input of the layer, y is output of the layer. w is called the weight which can be trained by the obtained result. the wx+b is easily regarded as the liner relation, and the result of it is unlimited.If we want make it limited, we can use the activation function. The f(.) is a nonlinear function named activation function which commonly uses sigmoid function and ReLU function.

2.2 Autoencoder(AE)

Autoencoder (AE) is a kind of basic networks

2.3 Stacked Autoencoder (SAE)

2.4 Deep Belief Network (DBN)

2.5 Convolutional Neural Network (CNN)

Convolution is a kind of method to find the relation of the pixels from the input images.using a kernels can get the features from the image.

2.6 Generative Adversarial Networks(GANs)

GANs is a kind of model like zero-sum two players game, one is named generative model which can generate the data from the orginal data distribution.

【论文复现】一种基于价格弹性矩阵的居民峰谷分时电价激励策略【需求响应】(Matlab代码实现)内容概要:本文介绍了一种基于价格弹性矩阵的居民峰谷分时电价激励策略,旨在通过需求响应机制优化电力系统的负荷分布。该研究利用Matlab进行代码实现,构建了居民用电行为与电价变动之间的价格弹性模型,通过分析不同时间段电价调整对用户用电习惯的影响,设计合理的峰谷电价方案,引导用户错峰用电,从而实现电网负荷的削峰填谷,提升电力系统运行效率与稳定性。文中详细阐述了价格弹性矩阵的构建方法、优化目标函数的设计以及求解算法的实现过程,并通过仿真验证了所提策略的有效性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力,从事需求响应、电价机制研究或智能电网优化等相关领域的科研人员及研究生。; 使用场景及目标:①研究居民用电行为对电价变化的响应特性;②设计并仿真基于价格弹性矩阵的峰谷分时电价激励策略;③实现需求响应下的电力负荷优化调度;④为电力公司制定科学合理的电价政策提供理论支持和技术工具。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解价格弹性建模与优化求解过程,同时可参考文中方法拓展至其他需求响应场景,如工业用户、商业楼宇等,进一步提升研究的广度与深度。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值