Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
For example:
Given array A = [2,3,1,1,4]
The minimum number of jumps to reach the last index is 2.
(Jump 1 step
from index 0 to 1, then 3 steps
to the last index.)
首先想到的是用递归的方法去解,慢慢的遍历,但是显然效率比较低,最后的结果是大数据过不了!
class Solution {
public:
int jump(int A[], int n) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int ministep=n-1;
int count=0;
int depth=0;
countstep(A,n,depth,count,ministep);
return ministep;
}
void countstep(const int A[],int n, int &depth, int& count, int&ministep){
if(A[depth]>=n-depth-1) {
if(ministep>count+1)
ministep=count+1;
return;
}
for(int i=1 ; i<A[depth]+1 ; i++){
count++;
depth=depth+i;
countstep(A , n , depth,count,ministep);
depth=depth-i;
count--;
}
}
};
本文探讨了一个经典的算法问题:如何在给定的非负整数数组中找到从第一个元素到达最后一个元素所需的最小跳跃次数。通过使用递归方法进行遍历尝试解决此问题,但发现这种方法在大数据集上的效率较低。
617

被折叠的 条评论
为什么被折叠?



