https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
nouse[i][j]表示在i天不交易,且最多交易j次的情况下的最大获利;use[i][j]表示在i天交易,且最多交易j次的最大获利。
i对应diffs的i-1。
那么:
nouse[i][j] = max(nouse[i-1][j], use[i-1][j]);
use[i][j] = max(use[i-1][j], nouse[i-1][j-1])+diffs[i-1];代码:
class Solution {
public:
int maxProfit(int k, vector<int> prices) {
vector<int> diffs;
int profit = maxProfitNoLimits(prices, diffs);
if(k+1 >= prices.size()) {
return profit;
}
int n = prices.size();
// for i-1
vector<vector<int>> nouse(n, vector<int>(k+1, 0)), use(n, vector<int>(k+1, 0));
for(int i=1; i<n; ++i) {
for(int j=1; j<=k; ++j) {
nouse[i][j] = max(nouse[i-1][j], use[i-1][j]);
use[i][j] = max(use[i-1][j], nouse[i-1][j-1])+diffs[i-1];
}
}
return max(use[n-1][k], nouse[n-1][k]);
}
int maxProfitNoLimits(vector<int> &prices, vector<int>& diffs) {
int p = 0;
for(int i=1; i<prices.size(); ++i) {
int diff = prices[i]-prices[i-1];
p += (diff>0)*diff;
diffs.push_back(diff);
}
return p;
}
};public class Solution {
int maxProfit(int k, int[] prices) {
int n = prices.length;
int[] diffs = new int[n]; // diffs[i] : prices[i]-prices[i-1]
int profit = maxProfitNoLimits(prices, diffs);
if (k + 1 >= prices.length) {
return profit;
}
// for i-1
int[][] nouse = new int[n][k + 1];
int[][] use = new int[n][k + 1];
for (int i = 1; i < n; ++i) {
for (int j = 1; j <= k; ++j) {
nouse[i][j] = Math.max(nouse[i - 1][j], use[i - 1][j]);
use[i][j] = Math.max(use[i - 1][j], nouse[i - 1][j - 1]) + diffs[i];
}
}
return Math.max(use[n - 1][k], nouse[n - 1][k]);
}
int maxProfitNoLimits(int[] prices, int[] diffs) {
int p = 0;
for (int i = 1; i < prices.length; ++i) {
int diff = prices[i] - prices[i - 1];
if (diff > 0) {
p += diff;
}
diffs[i] = diff;
}
return p;
}
}思路2:
很多人采用local和global两个数组表示状态转移。
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
if(prices.size() <= 1) return 0;
if(k >= prices.size()) return maxProfitNoLimits(prices);
int *global = new int[k+1];
int *local = new int[k+1];
for(int i=0; i<=k; ++i) {
global[i] = local[i] = 0;
}
for(int i = 0; i < prices.size()-1; ++i) {
int diff = prices[i+1] - prices[i];
for(int j = k; j >= 1; --j) {
local[j] = max(global[j-1] + max(diff, 0), local[j] + diff);
global[j] = max(global[j], local[j]);
}
}
int profit = global[k];
delete[] global;
delete[] local;
return profit;
}
int maxProfitNoLimits(vector<int> &prices) {
int p = 0;
for(int i=1; i<prices.size(); ++i) {
p += (prices[i]>prices[i-1])*(prices[i]-prices[i-1]);
}
return p;
}
};思路3:
对思路1改进,降低空间复杂度。
class Solution {
public:
int maxProfit(int k, vector<int> prices) {
vector<int> diffs;
int profit = maxProfitNoLimits(prices, diffs);
if(k+1 >= prices.size()) {
return profit;
}
int n = prices.size();
vector<int> nouse(k+1, 0), use(k+1, 0);
for(int i=1; i<n; ++i) {
for(int j=1; j<=k; ++j) {
int ui1j = use[j], nui1j = nouse[j], nui1j1 = nouse[j-1];
use[j] = max(ui1j, nui1j1)+diffs[i-1];
nouse[j] = max(ui1j, nui1j);
}
}
return max(use[k], nouse[k]);
}
int maxProfitNoLimits(vector<int> &prices, vector<int>& diffs) {
int p = 0;
for(int i=1; i<prices.size(); ++i) {
int diff = prices[i]-prices[i-1];
p += (diff>0)*diff;
diffs.push_back(diff);
}
return p;
}
};
本文介绍了一种算法,用于解决给定股票价格数组中如何通过最多k次交易获得最大利润的问题。提供了三种不同的实现思路,包括状态转移方程的推导及优化方案。
378

被折叠的 条评论
为什么被折叠?



