[leetcode] Unique Paths II

本文探讨了在存在障碍物的情况下计算从左上角到右下角的不同路径数量的问题。提供了两种解决方案,一种使用二维动态规划,另一种则通过优化内存消耗采用一维数组实现。这两种方法都有效地解决了问题,并在LeetCode的“Unique Paths II”题目中得到了验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

From : https://leetcode.com/problems/unique-paths-ii/

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m=obstacleGrid.size(), n=obstacleGrid[0].size();
        vector<vector<int>> steps(m, vector<int>(n, 0));
		int flag = 1;
        for(int i=0; i<m; i++) {
			flag = flag&(!obstacleGrid[i][0]);
			steps[i][0] = flag;
		}
		flag = 1;
        for(int j=0; j<n; j++) {			
			flag = flag&(!obstacleGrid[0][j]);
			steps[0][j] = flag;
		}
        for(int i=1; i<m; i++) {
            for(int j=1; j<n; j++) {
                steps[i][j] = (!obstacleGrid[i][j])*(steps[i-1][j]+steps[i][j-1]);
            }
        }
        return steps[m-1][n-1];
    }
};

优化:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m=obstacleGrid.size(), n=obstacleGrid[0].size();
		vector<int> res(n, 0);
		res[0] = !obstacleGrid[0][0];
		for(int i=0; i<m; i++) {
			for(int j=0; j<n; j++) {
			    if(obstacleGrid[i][j]) res[j]=0;
			    else if(j>0) res[j] += res[j-1];
			}
		}
		return res[n-1];
    }
};

public class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        if(obstacleGrid == null || obstacleGrid.length == 0) {
            return 0;
        }
        int m = obstacleGrid.length, n = obstacleGrid[0].length;
        int[] v = new int[n];
        for(int i=0; i<n && obstacleGrid[0][i]==0; ++i) {
            v[i] = 1;
        }
        
        int flag = 1-obstacleGrid[0][0];
        for(int i=1; i<m; ++i) {
            if(flag==0 || obstacleGrid[i][0]==1) {
                flag = 0;
            }
            v[0] = flag;
            for(int j=1; j<n; ++j) {
                v[j] = (1-obstacleGrid[i][j])*(v[j]+v[j-1]);
            }
        }
        
        return v[n-1];
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值