Hash Function

本文介绍了一种通过已知哈希表重建最小插入序列的方法,适用于解决特定类型的计算机科学问题。文章详细阐述了如何记录每个点的连续段起始和结束位置,并按此顺序查找元素以重建序列。同时提供了完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:https://www.nowcoder.com/acm/contest/142/J
 

Chiaki has just learned hash in today's lesson. A hash function is any function that can be used to map data of arbitrary size to data of fixed size. As a beginner, Chiaki simply chooses a hash table of size n with hash function .
Unfortunately, the hash function may map two distinct values to the same hash value. For example, when n = 9 we have h(7) = h(16) = 7. It will cause a failure in the procession of insertion. In this case, Chiaki will check whether the next position is available or not. This task will not be finished until an available position is found. If we insert {7, 8, 16} into a hash table of size 9, we will finally get {16, -1, -1, -1, -1, -1, -1, 7, 8}. Available positions are marked as -1.
After done all the exercises, Chiaki became curious to the inverse problem. Can we rebuild the insertion sequence from a hash table? If there are multiple available insertion sequences, Chiaki would like to find the smallest one under lexicographical order.
Sequence a1, a2, ..., an is lexicographically smaller than sequence b1, b2, ..., bn if and only if there exists i (1 ≤ i ≤ n) satisfy that ai < bi and aj = bj for all 1 ≤ j < i.

输入描述:

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line of each case contains a positive integer n (1 ≤ n ≤ 2 x 105) -- the length of the hash table. 
The second line contains exactly n integers a1,a2,...,an (-1 ≤ ai ≤ 109).
It is guaranteed that the sum of all n does not exceed 2 x 106.

输出描述:

For each case, please output smallest available insertion sequence in a single line. Print an empty line when the available insertion sequence is empty. If there's no such available insertion sequence, just output -1 in a single line.

示例1

输入

复制

3
9
16 -1 -1 -1 -1 -1 -1 7 8
4
8 5 2 3
10
8 10 -1 -1 34 75 86 55 88 18

输出

复制

7 8 16
2 3 5 8
34 75 86 55 88 18 8 10

题意:

一次探测法求出最小的可能

分析:

记录每一个点连续段的开始位置和结束位置,依次往下找点

代码:

#include<bits/stdc++.h>
#define ll long long
#define inf 0x3f3f3f3f
#define p pair<int,int>
using namespace std;
const int maxn=200010;
int n,m,k,cnt,tmp,T,f,t;
int a[maxn],vis[maxn],us[maxn],pre[maxn],nex[maxn],ans[maxn];
int main()
{
    scanf("%d",&T);
    while(T--){
     priority_queue<p,vector<p>,greater<p> >q; 
     scanf("%d",&n);
     for(int i=0;i<=n;i++)vis[i]=us[i]=pre[i]=nex[i]=0;
     tmp=0;
     for(int i=0;i<n;i++)
     {
         scanf("%d",&a[i]);
         if(a[i]!=-1&&a[i]%n==i){q.push(p(a[i],i));us[i]=1;}
         if(a[i]!=-1)tmp++;
     }
     cnt=0;f=0;
     while(!q.empty())
     {
         p k=q.top();q.pop();
         t=k.second;
         ans[f++]=a[t];
         if(f==tmp) break;
         vis[t]=1;
         int r=(t+1)%n,l=(t-1+n)%n;
         while(vis[r])r=nex[r];
         while(vis[l])l=pre[l];
         nex[t]=r;pre[t]=l;
         if(!us[r]&&a[r]!=-1&&(n+r-l-1)%n>=(n+r-a[r]%n)%n)
         {
             q.push(p(a[r],r));
             us[r]=1;
         }
     }
     if(f!=tmp)puts("-1");
     else
     {
     if(!f) puts("");
     else for(int i=0;i<f;i++)
     printf("%d%c",ans[i],i==f-1?'\n':' ');
    }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值