Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)
分析:
先排序,然后左右夹逼
T(n)=O(n^3) 空间复杂的:T(n)=O(1)
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
int size = nums.size();
vector<int> vec;
vector<vector<int>> ret;
if (size < 4)
return ret;
sort(nums.begin(), nums.end());
for (int i = 0; i < size-3; i++){
for (int j = i + 1; j < size-2; j++){
int k = j + 1,u=size-1;
while (k<u){
if (nums[i] + nums[j] + nums[k] + nums[u] == target){
ret.push_back({ nums[i], nums[j], nums[k], nums[u] });
k++;
u--;
int tmp = u +1;
while (u >= 0 && tmp >= 0 && nums[tmp] == nums[u]){
tmp--;
u--;
}
}
else if (nums[i] + nums[j] + nums[k] + nums[u] > target)
u--;
else
k++;
}
int tmp = j + 1;
while (j < size && tmp < size && nums[tmp] == nums[j]){
tmp++;
j++;
}
}
int tmp = i + 1;
while (i < size && tmp < size && nums[tmp] == nums[i]){
tmp++;
i++;
}
}
return ret;
}
};