SDK -  (5) - ArrayMap

本文深入探讨了ArrayMap与HashMap两种数据结构的区别,包括它们的内部结构、工作原理及各自的优缺点。ArrayMap适用于数据量小、内存要求高的场景,如Android应用中,其内存占用优于HashMap,但在数据量大时查询效率较低。

一、内部结构

 

 

二、原理

数据结构2个数组,一个存key的hash值 ,一个存key和value的值。

Get操作

    ->  通过key值得到hash值 ->  通过2分查找求出index (数据量大 效率降低原因之一)

    -> key = Arrays[2*index]   value =  Arrays[2*index +1]   

 

Put操作

    ->  找到index , 如果index没找到  返回~index值

    ->  扩容 1.5倍 (<4时 4个,>4&&<8 8个)

 

 

三、对比hashMap优缺点

不同点

1、ArrayMap采用的数据结构是两个一维数组,而HashMap使用的是一维数组和单链表数据结构

2、ArrayMap默认容量为0,而HashMap默认容量是16。

3、ArrayMap没有最大容量的限制,直到报oom,而HashMap最大容量最大是Integer.MAX_VALUE

4、ArrayMap默认每次扩容时原来容量一半的增量(大于4小于8时申请8个,小于4时申请4个),而HashMap默认每次扩容时原来容量2倍的增量

优点:

1、相比HashMap内存空间更优,因为比HashMap少了一个实体类进行装饰

2、容量为4或者8时又缓存复用功能

3、扩容比HashMap高效,因为HashMap扩容时相当于重构,需要重新重新计算hash值和移动元素;而ArrayMap扩容时只需拷贝

缺点:

1、数据量大的情况下查询效率比HashMap差

2、存取效率比HashMap低,因为每次存取都需要二分法找到对应的下标

3、没有实现Serializable,不便在Android bundle进行传输

 

四、使用场景

1、数据量小,建议百量级别

2、内存要求高

参考:https://www.jianshu.com/p/1a14fc87b935

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值