TASKING LSL EXAMPLE FOR TRICORE TC397XP

C文件源码

/*****************************************************
 *
 * TC397XP_TST.c
 *
 * Description : Hello World in C, ANSI-style
 *
 */
#include <stdio.h>
#include <stdint.h>


/*____________________________________________________________________________*/

#pragma section all "SHT_ConstZone"

__near volatile const uint32_t CZ_CALIB_A = 0x01U;

#pragma protect on
__near volatile const uint32_t CZ_CALIB_B = 0x02U;
#pragma protect off

#pragma section all restore

/*____________________________________________________________________________*/
// use __attribute__((protect)) to exclude a variable/function from
// the duplicate/unreferenced section removal optimization in the linker.
#pragma section all "SHT_ConstPara"
__attribute__((protect)) volatile const unsigned char CP_NormalPara = 0;
#pragma section all restore


/*____________________________________________________________________________*/

#pragma section fardata "SHT_Assign_DLMU0"

#pragma section_name_with_symbol
__protect__ __far int dlmu_core0 = 0;
#pragma section_name_with_symbol off

#pragma section fardata restore

/*____________________________________________________________________________*/
#pragma  section all "SHT_Assign_NearAddr"
__protect__  __near volatile uint32_t Var_ToNearAddr;
#pragma  section all restore

/*____________________________________________________________________________*/
#pragma  section all "SHT_Assign_DLMUCPU0"
//__attribute__((protect)) volatile uint32_t LargeArray[0x4000] =  {0x1234};
__attribute__((protect)) volatile uint32_t LargeArray[0xF0] =  {0x1234};
__attribute__((protect)) volatile uint32_t BesideArray =  5555;
#pragma section all restore

/*____________________________________________________________________________*/
#pragma  section all "SHT_Assign_LMURAM2"
__attribute__((protect)) volatile uint32_t Var_In_lmuram2 =  0x1234;
#pragma section all restore

/*____________________________________________________________________________*/
__attribute__((protect)) volatile uint32_t Var_In_DefRam =  0x1884;


/*____________________________________________________________________________*/
uint16_t Glb_NmlVar;
__protect__ __near uint16_t sht_my_var;

/* Glb_ExtNmlVar defined in another application located at address 0x70001000 */
extern uint16_t Extern_NmlVar;
extern uint16_t Glb_ExtNmlVar;

/*____________________________________________________________________________*/
/* the default near allocation value is set to zero to
 * prevent any near addressable sections without using the __near qualifier */
__protect__ uint32_t glb_default_near_var = 0xAFFA5A5A;


__protect__ uint32_t glb_calib_value = 0xA5A5;
__protect__ uint32_t glb_keep_value;

/*____________________________________________________________________________*/
/* sht_void_func defined in another application located at address 0x80007000 */
void sht_extern_func(void);

void sht_init_func(void);

/*____________________________________________________________________________*/
void sht_tst1st_func(void);
void sht_tst2nd_func(void);
void sht_tst3rd_func(void);

/*____________________________________________________________________________*/
__protect__ uint8_t glb_OVTFL_arr1[0x200]; /* 0.5K */
__protect__ uint8_t glb_OVTFL_arr2[0x200]; /* 0.5K */
__protect__ uint8_t glb_OVTFL_arr3[0x200];


/*____________________________________________________________________________*/
void sht_tst1st_func(void)
{
	printf( "I'm sht_tst1st_func\n");
}
void sht_tst2nd_func(void)
{
	printf( "I'm sht_tst2nd_func\n");
}
void sht_tst3rd_func(void)
{
	printf( "I'm sht_tst3rd_func\n");
}
/*____________________________________________________________________________*/

void sht_init_func(void)
{
	Glb_NmlVar = 0x1234;
}

void sht_func_in_lmuram(void)
{
	printf( "the linker creates a copy table entry for the initialized function\n");
}

void sht_func_in_app(void)
{
	printf( "used in a copy loop executed by the application code.\n");
}

/*____________________________________________________________________________*/
/* use a linker label to determine the start address of the group in flash */
extern __far uint32_t _lc_gb_ROM_COPY_INIT_CODE;
/* use a linker label to determine the end address of the group in flash */
extern __far uint32_t _lc_ge_ROM_COPY_INIT_CODE;
/* use a linker label to determine the start address of the overlay group in RAM memory */
extern __far uint32_t _lc_gb_INIT_CODE;

void Initialize_the_RAM_function(void)
{
	/* load the start address of the ROM copy group into source pointer */
	uint32_t *source = &_lc_gb_ROM_COPY_INIT_CODE;
	/* load the start address of the RAM group into destination pointer */
	uint32_t *dest = &_lc_gb_INIT_CODE;

	/* initialize the RAM function using a copy loop */
	for(uint32_t loopcount=0; loopcount <
	(&_lc_ge_ROM_COPY_INIT_CODE-&_lc_gb_ROM_COPY_INIT_CODE); loopcount++)
	{
		*dest++ = *source++;
	}
}
/*____________________________________________________________________________*/

int main(void)
{
	uint32_t var_u32_tst = 0x00;

	Glb_ExtNmlVar = 0x03;

	printf( "Hello TASKING: %u", var_u32_tst);

	printf( "Hello world: %8u\n", CZ_CALIB_B);

	sht_init_func();
	sht_extern_func();

	Initialize_the_RAM_function();
	while(1)
	{
	    __nop();
	}
}

LSL文件测试代码

//****************************************************************************
//**                                                                         *
//**  FILE        :  cpu.lsl                                                 *
//**                                                                         *
//**  DESCRIPTION :  Project specific Linker Script.                         *
//**                                                                         *
//**  Copyright 2007-2019 TASKING BV                                         *
//**                                                                         *
//****************************************************************************

// TASKING VX-toolset for TriCore
// Eclipse project linker script file

/*____________________________________________________________________________*/

//the group name is shown in the map file when the assignment was successful
section_layout :vtc:abs18
{
	// group entry to place a non initialized far addressed data section in LMURAM memory
	group MY_DATA ( ordered, run_addr=mem:mpe:dspr0 )
	{
	   select ".zbss.TC397XP_TST.sht_my_var";
	}
}

/*____________________________________________________________________________*/
section_layout :vtc:linear
{
	/* variable Glb_ExtNmlVar is included in another project and located at address 0x70001000 */
	"Glb_ExtNmlVar" = 0x70001000;
	
	/* Can make a symbol conditional : created only when it is referenced in an object file.*/
	/* For this purpose, use ":="  */
	"Extern_NmlVar" := 0x70002000;
	
	
	/* function sht_extern_func is included in another project and located at address 0x80007000 */
	"sht_extern_func" := 0x80007000;
}

/*____________________________________________________________________________*/
section_layout mpe:vtc:abs18
{
    group MY_CAL_ZONE(contiguous,ordered, run_addr = 0x80000800)
    {                          
        select ".zrodata.SHT_ConstZone";
    }
}

/*____________________________________________________________________________*/

section_layout mpe:vtc:linear
{
    group MY_calibration(ordered, contiguous, run_addr = 0x70000100, attributes=rw, fill=0)
    {
        section "calibration_section" (size = 32, attributes=rw, fill=0)
        {
            select "*.SHT_ConstPara";
        }
    }
}
/*____________________________________________________________________________*/

section_layout mpe:vtc:linear
{
    group MY_dlmu0(ordered, contiguous, run_addr = 0x70000400, attributes=rw, fill=0)
    {
        select "*.SHT_Assign_DLMU0";
    }
}

/*____________________________________________________________________________*/
section_layout :vtc:abs18
{       
    group MY_tst_bss(ordered, run_addr=0x10000800)//
    {
        select".zbss.SHT_Assign_NearAddr";
    }
}
/*____________________________________________________________________________*/
section_layout :vtc:linear
{       
    group MY_tst_data(ordered, run_addr=mem:mpe:dlmucpu0/not_cached)
    {
        select".data.SHT_Assign_DLMUCPU0";
    }
}

/*____________________________________________________________________________*/
section_layout mpe:vtc:linear
{       
    group MY_tst_LMU_data(ordered, run_addr=mem:mpe:lmuram2)//
    {
        select".data*.SHT_Assign_LMURAM2";
    }
}
/*____________________________________________________________________________*/
section_layout mpe:vtc:linear
{       
    group MY_RAW_LMU_data(ordered, run_addr=mem:mpe:lmuram2)//
    {
        select".data.TC397XP_TST.RawVar_In_lmuram2";
    }
}
/*____________________________________________________________________________*/

section_layout mpe:vtc:linear
{       
    group MY_printf(ordered, run_addr = mem:mpe:pflash0/not_cached)//0x80000300)//
    {
        select".text.printf.libcs_fpu";
    }
}

/*____________________________________________________________________________*/
// section_setup entry for the source location (here virtual linear memory, vtc)
section_setup mpe:vtc:linear
{
	// Link time code core association private to assign the section to core0 memory
	modify input (space = mpe:tc0:linear)
	{
	   select ".text.TC397XP_TST.sht_init_func";
	}
}

// section_layout entry for the placement of the section in TC0 local PSPR0 memory
// and the 'copy' keyword for the linker to create a ROM copy section
// for the initialized code
section_layout :tc0:linear
{
	group TC0_FUNCTIONS ( ordered, run_addr=mem:mpe:pspr0, copy )
	{
	   select ".text.TC397XP_TST.sht_init_func";
	}
}

/*____________________________________________________________________________*/
section_layout :vtc:linear
{
	group SHT_Init_Area( ordered, run_addr = mem:mpe:dspr0 )
	{
		/* Define output section BSS_DATA with a size of 1kB in memory DSPR0 and
		* assign the arrays defined in TC397XP_TST.c to this section.
		* Use overflow output section BSS_DATA_OVERFLOW for sections
		* that do not fit in BSS_DATA. */
		section "BSS_DATA" (size=1k, attributes=rw, overflow = "BSS_DATA_OVERFLOW")
		{
		   select ".bss.TC397XP_TST.glb_OVTFL_arr*";
		}
	}
	group SHT_Backup_Area( ordered, run_addr = mem:mpe:dspr1 )
	{
		/* If the available space of 1kB is not enough for all sections starting
		* with the name .bss.TC397XP_TST.glb_OVTFL_arr
		* this overflow section with a size of 1 kB is used for the remaining sections. */
		section "BSS_DATA_OVERFLOW" (size=1k, attributes=rw)
		/* Instead of using a fixed absolute size for the output section you can
		* use the blocksize keyword to specify an adaptive size.
		* Then the size of the output section increases to a multiple of
		* the blocksize value. */
		/* section "BSS_DATA_OVERFLOW" (blocksize=2k, attributes=rw) */
		{
		}
	}
}
/*____________________________________________________________________________*/
section_layout :vtc:linear
{
	// generate a ROM copy section and a copy table entry for the startup code
	// in order to copy the code from ROM to RAM during startup
	group NML_INIT_CODE ( ordered, run_addr=mem:mpe:lmuram0, copy )
	{
	   select ".text.TC397XP_TST.sht_func_in_lmuram";
    }
}

/*____________________________________________________________________________*/
section_layout :vtc:linear
{
	/* generate a ROM copy section for initialized code */
	group INIT_CODE (overlay, ordered, run_addr=mem:mpe:dspr0)
	{
	   select ".text.TC397XP_TST.sht_func_in_app";
	}
	/* assign the ROM copy of the initialized section to a group to determine start and end address */
	group ROM_COPY_INIT_CODE (ordered, load_addr)
	{
	   select ".text.TC397XP_TST.sht_func_in_app";
	}
}

/*____________________________________________________________________________*/
section_layout :vtc:linear
{
	/* reserves 256B in pflash0 memory starting at offset 0x100 in this memory range */
	group ( ordered, run_addr = mem:mpe:pflash0[0x100] )
	{
	   reserved "MY_RESERVE" ( size = 256 );
	}
	
	/* reserves 256B in pflash0 memory starting at offset 0x200 in this memory range */
	/* To allow absolute-placed sections use alloc_allowed=absolute */
	group ( ordered, run_addr = mem:mpe:pflash0[0x200] )
	{
	   reserved "MY_LARGER_RESERVE" ( alloc_allowed=absolute, size = 256 );
	}
	
	/*group is placed at the absolute start address offset 0x320 in memory pflash0 which
       is within the reserved range.*/
	group SPECIAL_1ST2ND_FUN ( ordered, contiguous, run_addr = mem:mpe:pflash0[0x320] )
	{
		select ".text.TC397XP_TST.sht_tst1st_func";
		select ".text.TC397XP_TST.sht_tst2nd_func";
	}
}

/*____________________________________________________________________________*/
section_layout :vtc:linear
{
    /*To allow placement of sections which are placed in a memory range use alloc_allowed=ranged.*/
    group ( ordered, run_addr = mem:mpe:pflash1[0x200] )
    {
       reserved "MY_ANOTHER_RESERVE" ( alloc_allowed=ranged, size = 256 );
    }
    
    /*group is placed in an address range, starting at offset 0x380 and ending at offset
         0x3A0 in memory pflash1 which is within the reserved range.*/
    group SPECIAL_3RD_FUN ( ordered, contiguous, run_addr = mem:mpe:pflash1[0x380..0x3A0] )
    {
        select ".text.TC397XP_TST.sht_tst3rd_func";
    }
}


/*____________________________________________________________________________*/
/* The name of the ROM copy section is equal to the name of the RAM section,
   but the ROM copy section name is offset by square brackets [ ].
*/
section_layout :vtc:linear
{
	/* To select a ROM copy section you need to use the full name
	   including the square brackets in the select line for an LSL group. 
	   In order to have them accepted by the linker you need to escape them using "\".
	*/
	
	/* To have ROM section placed starting at offset 0x100 in pflash2 memory */
	group MY_ROM_COPY_SECTIONS ( ordered, run_addr = mem:mpe:pflash2[0x100] )
	{
	   select "\[.data.TC397XP_TST.glb_default_near_var\]";
	}
	
	/* instead of using run_addr in the group definition you can use the keyword load_addr.
     This informs the linker to select the ROM copy of initialized sections.
     When doing this, you need to remove the square brackets to select the section:
	*/
	
	/* To have ROM section placed starting at offset 0x200 in pflash2 memory */
	group MY_ROM_LOAD_SECTIONS ( ordered, load_addr = mem:mpe:pflash2[0x200] )
	{
	   select ".data.TC397XP_TST.glb_default_near_var";
	}
	
	/* To have the RAM section placed starting at offset 0x200 in DSPR2 RAM */
	group MY_INITIALIZED_SECTIONS ( ordered, run_addr = mem:mpe:dspr2[0x200] )
	{
	   select ".data.TC397XP_TST.glb_default_near_var";
	}
}

/*____________________________________________________________________________*/

#define DO_NOT_INITIALIZE_CALIB_VALUE
#define DO_NOT_CLEAR_KPTVAL

section_layout :vtc:linear
{
	#ifdef DO_NOT_INITIALIZE_CALIB_VALUE
	
	// nocopy is added here to remove the ROM copy section for this initialized data
	// and the copy table entry
	group CALIBRATION_VALUE ( ordered, run_addr = mem:mpe:dspr0, nocopy )
	{
	   select ".data.TC397XP_TST.glb_calib_value";
	}
	
	#else
	
	group CALIBRATION_VALUE ( ordered, run_addr = mem:mpe:dspr0 )
	{
	   select ".data.TC397XP_TST.glb_calib_value";
	}
	
	#endif
	
	
	#ifdef DO_NOT_CLEAR_KPTVAL
	// the scratch attribute "s" is added here to prevent a copy table entry
	// to clear this section
	group NOT_CLEAR_KPTVAL ( ordered, run_addr = mem:mpe:dspr0, attributes = rws )
	{
	   select ".bss.TC397XP_TST.glb_keep_value";
	}
	
	#else
	
	group NOT_CLEAR_KPTVAL ( ordered, run_addr = mem:mpe:dspr0 )
	{
	   select ".bss.TC397XP_TST.glb_keep_value";
	}
	
	#endif
}

/*____________________________________________________________________________*/
/*____________________________________________________________________________*/

内容概要:文章以“智能网页数据标注工具”为例,深入探讨了谷歌浏览器扩展在毕业设计中的实战应用。通过开发具备实体识别、情感分类等功能的浏览器扩展,学生能够融合前端开发、自然语言处理(NLP)、本地存储与模型推理等技术,实现高效的网页数据标注系统。文中详细解析了扩展的技术架构,涵盖Manifest V3配置、内容脚本与Service Worker协作、TensorFlow.js模型在浏览器端的轻量化部署与推理流程,并提供了核心代码实现,包括文本选择、标注工具栏动态生成、高亮显示及模型预测功能。同时展望了多模态标注、主动学习与边缘计算协同等未来发展方向。; 适合人群:具备前端开发基础、熟悉JavaScript和浏览器机制,有一定AI模型应用经验的计算机相关专业本科生或研究生,尤其适合将浏览器扩展与人工智能结合进行毕业设计的学生。; 使用场景及目标:①掌握浏览器扩展开发全流程,理解内容脚本、Service Worker与弹出页的通信机制;②实现在浏览器端运行轻量级AI模型(如NER、情感分析)的技术方案;③构建可用于真实场景的数据标注工具,提升标注效率并探索主动学习、协同标注等智能化功能。; 阅读建议:建议结合代码实例搭建开发环境,逐步实现标注功能并集成本地模型推理。重点关注模型轻量化、内存管理与DOM操作的稳定性,在实践中理解浏览器扩展的安全机制与性能优化策略。
基于Gin+GORM+Casbin+Vue.js的权限管理系统是一个采用前后端分离架构的企业级权限管理解决方案,专为软件工程和计算机科学专业的毕业设计项目开发。该系统基于Go语言构建后端服务,结合Vue.js前端框架,实现了完整的权限控制和管理功能,适用于各类需要精细化权限管理的应用场景。 系统后端采用Gin作为Web框架,提供高性能的HTTP服务;使用GORM作为ORM框架,简化数据库操作;集成Casbin实现灵活的权限控制模型。前端基于vue-element-admin模板开发,提供现代化的用户界面和交互体验。系统采用分层架构和模块化设计,确保代码的可维护性和可扩展性。 主要功能包括用户管理、角色管理、权限管理、菜单管理、操作日志等核心模块。用户管理模块支持用户信息的增删改查和状态管理;角色管理模块允许定义不同角色并分配相应权限;权限管理模块基于Casbin实现细粒度的访问控制;菜单管理模块动态生成前端导航菜单;操作日志模块记录系统关键操作,便于审计和追踪。 技术栈方面,后端使用Go语言开发,结合Gin、GORM、Casbin等成熟框架;前端使用Vue.js、Element UI等现代前端技术;数据库支持MySQL、PostgreSQL等主流关系型数据库;采用RESTful API设计规范,确保前后端通信的标准化。系统还应用了单例模式、工厂模式、依赖注入等设计模式,提升代码质量和可测试性。 该权限管理系统适用于企业管理系统、内部办公平台、多租户SaaS应用等需要复杂权限控制的场景。作为毕业设计项目,它提供了完整的源码和论文文档,帮助学生深入理解前后端分离架构、权限控制原理、现代Web开发技术等关键知识点。系统设计规范,代码结构清晰,注释完整,非常适合作为计算机相关专业的毕业设计参考或实际项目开发的基础框架。 资源包含完整的系统源码、数据库设计文档、部署说明和毕
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

issta

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值