当下AI与数据库的融合已成为推动数据管理和分析领域发展的重要力量。传统的数据库查询方式,如结构化查询语言(SQL),要求用户具备专业的数据库知识,这无疑限制了非专业人士对数据的访问和利用。为了打破这一壁垒,AI驱动的数据库查询方法应运而生,其中Text2SQL和检索增强生成(RAG)(微软最新研究:RAG(Retrieval-Augmented Generation)的四个级别深度解析)是两种具有代表性的技术。然而,这两种方法在实际应用中均存在局限性,促使研究人员探索更为强大和灵活的框架。今天我们一起了解一下表增强生成(TAG),并探讨其在AI驱动数据库查询领域的潜力和未来研究方向。

一、现有方法的局限性
Text2SQL的局限
Text2SQL方法的核心在于将用户的自然语言查询转换为可执行的SQL语句,从而在关系型数据库上执行查询。这种方法在处理与结构化数据直接相关的查询时表现出色,但在面对需要外部世界知识或语义推理的复杂用户请求时则显得力不从心。根据研究人员的观点,现实世界的业务查询通常涉及以下四个方面:
- 领域知识
这部分知识由数据库本身覆盖。
- 世界知识
这需要语言模型理解外部信息。

最低0.47元/天 解锁文章
1765

被折叠的 条评论
为什么被折叠?



