矩阵论前三章复习

矩阵论复习

一、简答题(5小题,共20分)

1. 线性空间

V V V 是一个非空集合, F F F 是一个数域,

定义从 V × V V \times V V×V V V V 的映射为加法,即 ( α , β ) ↦ γ = α + β (\alpha, \beta) \mapsto \gamma = \alpha + \beta (α,β)γ=α+β
定义从 F × V F \times V F×V V V V 的映射为数乘,即 ( k , α ) ↦ δ = k α (k, \alpha) \mapsto \delta = k\alpha (k,α)δ=kα

且加法和数乘满足以下8条运算法则:

  1. 交换律: ∀ α , β ∈ V , α + β = β + α \forall \alpha, \beta \in V, \alpha + \beta = \beta + \alpha α,βV,α+β=β+α
  2. 结合律: ∀ α , β , γ ∈ V , ( α + β ) + γ = α + ( β + γ ) \forall \alpha, \beta, \gamma \in V, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) α,β,γV,(α+β)+γ=α+(β+γ)
  3. 零元素: ∃ 0 ∈ V  s.t.  ∀ α ∈ V , α + 0 = α \exists 0 \in V \text{ s.t. } \forall \alpha \in V, \alpha + 0 = \alpha ∃0V s.t. αV,α+0=α
  4. 负元素: ∀ α ∈ V , ∃ β ∈ V  s.t.  α + β = 0 \forall \alpha \in V, \exists \beta \in V \text{ s.t. } \alpha + \beta = 0 αV,βV s.t. α+β=0
  5. 单位元: ∀ α ∈ V , 1 α = α \forall \alpha \in V, 1\alpha = \alpha αV,1α=α
  6. 数乘结合律: ∀ k , l ∈ F , α ∈ V , ( k l ) α = k ( l α ) \forall k, l \in F, \alpha \in V, (kl)\alpha = k(l\alpha) k,lF,αV,(kl)α=k(lα)
  7. 左分配律: ∀ k , l ∈ F , α ∈ V , ( k + l ) α = k α + l α \forall k, l \in F, \alpha \in V, (k + l)\alpha = k\alpha + l\alpha k,lF,αV,(k+l)α=kα+lα
  8. 右分配律: ∀ k ∈ F , α , β ∈ V , k ( α + β ) = k α + k β \forall k \in F, \alpha, \beta \in V, k(\alpha + \beta) = k\alpha + k\beta kF,α,βV,k(α+β)=kα+kβ

则称 V V V 是一个线性空间。

2. 线性变换的不变子空间

W W W 是线性空间 V V V 的一个非空子集,对 V V V 的加法和数乘都封闭(子空间的定义),即

  • α , β ∈ W \alpha, \beta \in W α,βW,则 α + β ∈ W \alpha + \beta \in W α+βW
  • α ∈ W , k ∈ F \alpha \in W, k \in F αW,kF,则 k α ∈ W k\alpha \in W kαW

且设 A A A V V V 上的线性变换,若:

  • ∀ α ∈ W , A ( α ) ∈ W \forall \alpha \in W, A(\alpha) \in W αW,A(α)W

则是线性变换 A A A 的不变子空间。

3. 基到基的过渡矩阵

详细版

α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn β 1 , β 2 , ⋯   , β n \beta_1, \beta_2, \cdots, \beta_n β1,β2,,βn V V V 中的两组基,它们之间的关系是
β 1 = a 11 α 1 + a 21 α 2 + ⋯ + a n 1 α n β 2 = a 12 α 1 + a 22 α 2 + ⋯ + a n 2 α n ⋮ β n = a 1 n α 1 + a 2 n α 2 + ⋯ + a n n α n \begin{align*} \beta_1 &= a_{11}\alpha_1 + a_{21}\alpha_2 + \cdots + a_{n1}\alpha_n \\ \beta_2 &= a_{12}\alpha_1 + a_{22}\alpha_2 + \cdots + a_{n2}\alpha_n \\ &\vdots \\ \beta_n &= a_{1n}\alpha_1 + a_{2n}\alpha_2 + \cdots + a_{nn}\alpha_n \end{align*} β1β2βn=a11α1+a21α2++an1αn=a12α1+a22α2++an2αn=a1nα1+a2nα2++annαn
将这个关系式用矩阵记号可以表示成
( β 1 , β 2 , ⋯   , β n ) = ( α 1 , α 2 , ⋯   , α n ) P (\beta_1, \beta_2, \cdots, \beta_n) = (\alpha_1, \alpha_2, \cdots, \alpha_n)P (β1,β2,,βn)=(α1,α2,,αn)P
其中上式右边的矩阵 P P P 是由 α i \alpha_i αi β i \beta_i βi 的过渡矩阵。

简略版

α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn β 1 , β 2 , ⋯   , β n \beta_1, \beta_2, \cdots, \beta_n β1,β2,,βn V V V 中的两组基,
n n n 阶方阵 P P P 满足
( β 1 , β 2 , ⋯   , β n ) = ( α 1 , α 2 , ⋯   , α n ) P (\beta_1, \beta_2, \cdots, \beta_n) = (\alpha_1, \alpha_2, \cdots, \alpha_n)P (β1,β2,,βn)=(α1,α2,,αn)P
则是由 α i \alpha_i αi β i \beta_i βi 的过渡矩阵。
(把 β i \beta_i βi 在基 α i \alpha_i αi 下的坐标分别作为第 i i i 列构造的矩阵称为过渡矩阵)

4. 酉空间

V V V 是复数域上的 n n n 维线性空间,定义从 V × V V \times V V×V C C C 的映射,所对应的复数称为内积,记为 ( α , β ) (\alpha, \beta) (α,β)
且满足以下4条法则:

  1. Hermit性: ( α , β ) = ( β , α ) ‾ (\alpha, \beta) = \overline{(\beta, \alpha)} (α,β)=(β,α)
  2. 第一个变量数乘线性: k ( α , β ) = ( k α , β ) k(\alpha, \beta) = (k\alpha, \beta) k(α,β)=(kα,β)
  3. 第一个变量加法线性: ( α + β , v ) = ( α , v ) + ( β , v ) (\alpha + \beta, v) = (\alpha, v) + (\beta, v) (α+β,v)=(α,v)+(β,v)
  4. 正定性: ( α , α ) ≥ 0 (\alpha, \alpha) \geq 0 (α,α)0,当且仅当 α = 0 \alpha = 0 α=0 ( α , α ) = 0 (\alpha, \alpha) = 0 (α,α)=0

则是 n n n 维酉空间

5. 正交矩阵

n n n 阶实矩阵 A A A 满足 A T A = A A T = I A^TA = AA^T = I ATA=AAT=I,则 A A A 为正交矩阵

6. 酉矩阵

n n n 阶复矩阵 A A A 满足 A H A = A A H = I A^HA = AA^H = I AHA=AAH=I,则 A A A 为酉矩阵

7. 正交变换

V V V n n n 维欧氏空间,若 V V V 的线性变换 σ \sigma σ 满足:
∀ α , β ∈ V , ( σ ( α ) , σ ( β ) ) = ( α , β ) \forall \alpha, \beta \in V, (\sigma(\alpha), \sigma(\beta)) = (\alpha, \beta) α,βV,(σ(α),σ(β))=(α,β)
则是 V V V 的正交变换

8. 酉变换

V V V n n n 维酉空间,若 V V V 的线性变换 σ \sigma σ 满足:
∀ α , β ∈ V , ( σ ( α ) , σ ( β ) ) = ( α , β ) \forall \alpha, \beta \in V, (\sigma(\alpha), \sigma(\beta)) = (\alpha, \beta) α,βV,(σ(α),σ(β))=(α,β)
则是 V V V 的酉变换

9. 正规矩阵

n n n 阶复矩阵 A A A 满足 A A H = A H A AA^H = A^HA AAH=AHA,则 A A A 为正规矩阵

10. 正规矩阵结构定理

n n n 阶复矩阵 A A A 是正规矩阵的充要条件是存在 n n n 阶酉矩阵 U U U 使得
U H A U = diag ( λ 1 , λ 2 , ⋯   , λ n ) U^HAU = \text{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n) UHAU=diag(λ1,λ2,,λn)
(正规矩阵酉相似于对角矩阵)

二、证明题(4小题,共30分)

1. 验证一个空间在某种加法和数乘运算下为线性空间

验证线性空间非空以及8条性质:

  1. 交换律: α + β = β + α \alpha + \beta = \beta + \alpha α+β=β+α
  2. 结合律: ( α + β ) + γ = α + ( β + γ ) (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) (α+β)+γ=α+(β+γ)
  3. 零元素: ∃ 0 ∈ V  s.t.  α + 0 = α \exists 0 \in V \text{ s.t. } \alpha + 0 = \alpha ∃0V s.t. α+0=α
  4. 负元素: ∃ β ∈ V  s.t.  α + β = 0 \exists \beta \in V \text{ s.t. } \alpha + \beta = 0 βV s.t. α+β=0
  5. 单位元: 1 α = α 1\alpha = \alpha 1α=α
  6. 数乘结合律: ( k l ) α = k ( l α ) (kl)\alpha = k(l\alpha) (kl)α=k(lα)
  7. 左分配律: ( k + l ) α = k α + l α (k + l)\alpha = k\alpha + l\alpha (k+l)α=kα+lα
  8. 右分配律: k ( α + β ) = k α + k β k(\alpha + \beta) = k\alpha + k\beta k(α+β)=kα+kβ

2. 矩阵可逆的充要条件: n n n 阶矩阵可逆 ⇔ \Leftrightarrow 矩阵的行列式为非零常数(不含且不为0的常数)

(1)证明 “ ⇒ \Rightarrow ”:
n n n 阶矩阵 A A A 可逆
det ⁡ ( A ) ≠ 0 \det(A) \neq 0 det(A)=0
(2)证明 “ ⇐ \Leftarrow ”:
由于 det ⁡ ( A ) ≠ 0 \det(A) \neq 0 det(A)=0,故存在矩阵 B B B,其中 B B B A A A 的伴随矩阵
det ⁡ ( A ) ⋅ det ⁡ ( B ) = 1 \det(A) \cdot \det(B) = 1 det(A)det(B)=1,故 A A A 可逆且逆矩阵就是 B B B

3. 证明向量组线性相关或线性无关

定义1:若数域 K K K 上的线性空间 V V V 有一个向量组 α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn
若中有不全为0的数 k 1 , k 2 , ⋯   , k s k_1, k_2, \cdots, k_s k1,k2,,ks 使得
k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0 k1α1+k2α2++ksαs=0
则称向量组 α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn 线性相关。

定义2:若数域 K K K 上的线性空间 V V V 有一个向量组 α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn
k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0 k1α1+k2α2++ksαs=0 当且仅当 k 1 = k 2 = ⋯ = k s = 0 k_1 = k_2 = \cdots = k_s = 0 k1=k2==ks=0
则称向量组 α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn 线性无关。

【线性方程组】中列向量 α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn 线性相关

  • 齐次线性方程组有非零解
  • 列向量构成的行列式等于0

【单个向量或部分组】
命题1:含0向量的向量组一定线性相关
命题2:向量组有一个部分组线性相关,则向量组一定线性相关
命题3:向量组线性相关 ⇒ \Rightarrow 向量组中至少有一个向量可由其余向量线性表出
命题4:向量组 α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn 线性无关,若向量组 α 1 , α 2 , ⋯   , α n , β \alpha_1, \alpha_2, \cdots, \alpha_n, \beta α1,α2,,αn,β 线性相关,则 β \beta β 可以由向量组 α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn 线性表出

【表出方式】可以由向量组 α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn 线性表出,

  • 若向量组 α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn 线性相关,则表出方式不唯一

【向量个数】
命题1:向量组 β 1 , β 2 , ⋯   , β r \beta_1, \beta_2, \cdots, \beta_r β1,β2,,βr 可以由向量组 α 1 , α 2 , ⋯   , α s \alpha_1, \alpha_2, \cdots, \alpha_s α1,α2,,αs 线性表出且 r > s r > s r>s,则向量组 β 1 , β 2 , ⋯   , β r \beta_1, \beta_2, \cdots, \beta_r β1,β2,,βr 线性相关
命题2:向量组 β 1 , β 2 , ⋯   , β r \beta_1, \beta_2, \cdots, \beta_r β1,β2,,βr 可以由向量组 α 1 , α 2 , ⋯   , α s \alpha_1, \alpha_2, \cdots, \alpha_s α1,α2,,αs 线性表出且向量组 α 1 , α 2 , ⋯   , α s \alpha_1, \alpha_2, \cdots, \alpha_s α1,α2,,αs 线性相关,则 β 1 , β 2 , ⋯   , β r \beta_1, \beta_2, \cdots, \beta_r β1,β2,,βr 线性相关
命题3:向量组 β 1 , β 2 , ⋯   , β r \beta_1, \beta_2, \cdots, \beta_r β1,β2,,βr 与向量组 α 1 , α 2 , ⋯   , α s \alpha_1, \alpha_2, \cdots, \alpha_s α1,α2,,αs 互相线性表出(向量组等价)且它们都线性无关,则 r = s r = s r=s

4. 证明矩阵是正规矩阵

n n n 阶复矩阵 A A A 满足 A A H = A H A AA^H = A^HA AAH=AHA,则 A A A 为正规矩阵

5. 矩阵是酉阵的充要条件

命题1:若 n n n 阶复矩阵 A A A 满足 A H A = A A H = I A^HA = AA^H = I AHA=AAH=I,则 A A A 为酉矩阵
命题2: n n n 阶复矩阵 A A A 为酉矩阵 ⇔ \Leftrightarrow A A A 的个列向量或行向量是标准正交向量组
证明:设 A = [ α 1 α 2 ⋯ α n ] A = [\alpha_1 \alpha_2 \cdots \alpha_n] A=[α1α2αn],则
A H A = I A^HA = I AHA=I

A H A = [ α 1 H α 2 H ⋮ α n H ] [ α 1 α 2 ⋯ α n ] = I A^HA = \begin{bmatrix} \alpha_1^H \\ \alpha_2^H \\ \vdots \\ \alpha_n^H \end{bmatrix} [\alpha_1 \alpha_2 \cdots \alpha_n] = I AHA= α1Hα2HαnH [α1α2αn]=I
[ α 1 H α 1 α 1 H α 2 ⋯ α 1 H α n α 2 H α 1 α 2 H α 2 ⋯ α 2 H α n ⋮ ⋮ ⋱ ⋮ α n H α 1 α n H α 2 ⋯ α n H α n ] = I \begin{bmatrix} \alpha_1^H\alpha_1 & \alpha_1^H\alpha_2 & \cdots & \alpha_1^H\alpha_n \\ \alpha_2^H\alpha_1 & \alpha_2^H\alpha_2 & \cdots & \alpha_2^H\alpha_n \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_n^H\alpha_1 & \alpha_n^H\alpha_2 & \cdots & \alpha_n^H\alpha_n \end{bmatrix} = I α1Hα1α2Hα1αnHα1α1Hα2α2Hα2αnHα2α1Hαnα2HαnαnHαn =I
α i H α i = 1 ( i = 1 , 2 , ⋯   , n ) α i H α j = 0 ∀ i ≠ j ( i , j = 1 , 2 , ⋯   , n ) \alpha_i^H\alpha_i = 1 \quad (i = 1, 2, \cdots, n) \quad \alpha_i^H\alpha_j = 0 \quad \forall i \neq j \quad (i, j = 1, 2, \cdots, n) αiHαi=1(i=1,2,,n)αiHαj=0i=j(i,j=1,2,,n)
A A A 的个列向量是标准正交向量组(行向量同理可得)

三、计算题(5题,共50分)

1. 例1.12 例1.13

例1.12

已知
α 1 = [ 1 , 2 , 1 , 0 ] T , α 2 = [ − 1 , 1 , 1 , 1 ] T \alpha_1 = [1, 2, 1, 0]^T, \quad \alpha_2 = [-1, 1, 1, 1]^T α1=[1,2,1,0]T,α2=[1,1,1,1]T
β 1 = [ 2 , − 1 , 0 , 1 ] T , β 2 = [ 1 , − 1 , 3 , 7 ] T \beta_1 = [2, -1, 0, 1]^T, \quad \beta_2 = [1, -1, 3, 7]^T β1=[2,1,0,1]T,β2=[1,1,3,7]T
span { α 1 , α 2 } \text{span}\{\alpha_1, \alpha_2\} span{α1,α2} span { β 1 , β 2 } \text{span}\{\beta_1, \beta_2\} span{β1,β2} 的和与交的基和维数.

解:
(1)和空间:
由于 span { α 1 , α 2 } + span { β 1 , β 2 } = span { α 1 , α 2 , β 1 , β 2 } \text{span}\{\alpha_1, \alpha_2\} + \text{span}\{\beta_1, \beta_2\} = \text{span}\{\alpha_1, \alpha_2, \beta_1, \beta_2\} span{α1,α2}+span{β1,β2}=span{α1,α2,β1,β2},故把矩阵 [ α 1 α 2 β 1 β 2 ] [\alpha_1 \alpha_2 \beta_1 \beta_2] [α1α2β1β2] 经过初等行变换化成阶梯形矩阵:
[ 1 0 2 1 − 1 1 − 1 − 1 2 − 1 0 3 1 − 1 1 7 ] → [ 1 0 2 1 0 1 1 0 0 0 1 0 0 0 0 1 ] \begin{bmatrix} 1 & 0 & 2 & 1 \\ -1 & 1 & -1 & -1 \\ 2 & -1 & 0 & 3 \\ 1 & -1 & 1 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} 1121011121011137 1000010021101001
故由齐次方程组的基础解系可以得出:
和空间维数为3,基可以为 α 1 , α 2 , β 1 − β 2 \alpha_1, \alpha_2, \beta_1 - \beta_2 α1,α2,β1β2

(2)交空间:
由交空间的定义可知 span { α 1 , α 2 } ∩ span { β 1 , β 2 } \text{span}\{\alpha_1, \alpha_2\} \cap \text{span}\{\beta_1, \beta_2\} span{α1,α2}span{β1,β2},即
k 1 α 1 + k 2 α 2 = l 1 β 1 + l 2 β 2 k_1\alpha_1 + k_2\alpha_2 = l_1\beta_1 + l_2\beta_2 k1α1+k2α2=l1β1+l2β2
由上可知,解之得 α 1 − 4 α 2 = 3 β 1 − β 2 \alpha_1 - 4\alpha_2 = 3\beta_1 - \beta_2 α14α2=3β1β2,故交空间的维数为1,基为 α 1 − 4 α 2 = 3 β 1 − β 2 \alpha_1 - 4\alpha_2 = 3\beta_1 - \beta_2 α14α2=3β1β2

例1.13

已知
α 1 = [ 1 , 0 , 1 ] T , α 2 = [ 1 , 0 , − 1 ] T \alpha_1 = [1, 0, 1]^T, \quad \alpha_2 = [1, 0, -1]^T α1=[1,0,1]T,α2=[1,0,1]T
β 1 = [ 0 , 1 , 0 ] T , β 2 = [ 0 , 0 , 1 ] T \beta_1 = [0, 1, 0]^T, \quad \beta_2 = [0, 0, 1]^T β1=[0,1,0]T,β2=[0,0,1]T
V 1 = span { α 1 , α 2 } , V 2 = span { β 1 , β 2 } V_1 = \text{span}\{\alpha_1, \alpha_2\}, V_2 = \text{span}\{\beta_1, \beta_2\} V1=span{α1,α2},V2=span{β1,β2},试求:
(1) V 1 + V 2 V_1 + V_2 V1+V2 的基和维数
(2) V 1 ∩ V 2 V_1 \cap V_2 V1V2 的基和维数

解:
(1)设方程组
k 1 α 1 + k 2 α 2 + k 3 β 1 + k 4 β 2 = 0 k_1\alpha_1 + k_2\alpha_2 + k_3\beta_1 + k_4\beta_2 = 0 k1α1+k2α2+k3β1+k4β2=0
它等价于齐次方程组
{ k 1 + k 2 = 0 k 1 + k 4 = 0 k 2 + k 3 = 0 k 2 + k 3 = 0 \begin{cases} k_1 + k_2 = 0 \\ k_1 + k_4 = 0 \\ k_2 + k_3 = 0 \\ k_2 + k_3 = 0 \end{cases} k1+k2=0k1+k4=0k2+k3=0k2+k3=0
解之得: k 1 = − k 2 , k 3 = − k 2 , k 4 = − k 2 k_1 = -k_2, k_3 = -k_2, k_4 = -k_2 k1=k2,k3=k2,k4=k2,故和空间的维数为3,基可以为 α 1 , α 2 , β 1 − β 2 \alpha_1, \alpha_2, \beta_1 - \beta_2 α1,α2,β1β2

(2)由交空间的定义可知 V 1 ∩ V 2 V_1 \cap V_2 V1V2,即
k 1 α 1 + k 2 α 2 = l 1 β 1 + l 2 β 2 k_1\alpha_1 + k_2\alpha_2 = l_1\beta_1 + l_2\beta_2 k1α1+k2α2=l1β1+l2β2
由上可知,解之得 α 1 − 4 α 2 = 3 β 1 − β 2 \alpha_1 - 4\alpha_2 = 3\beta_1 - \beta_2 α14α2=3β1β2,故交空间的维数为1,基为 α 1 − 4 α 2 = 3 β 1 − β 2 \alpha_1 - 4\alpha_2 = 3\beta_1 - \beta_2 α14α2=3β1β2

2. 例1.23(书本1-15,核子空间基与维数)

例1.23

A A A 是线性空间 R 3 R^3 R3 上的线性变换,它在 R 3 R^3 R3 中基 α 1 , α 2 , α 3 \alpha_1, \alpha_2, \alpha_3 α1,α2,α3 下的矩阵表示是
A = [ 1 − 1 2 2 0 1 3 3 5 ] A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 3 & 5 \end{bmatrix} A= 123103215
(1) 求在基 β 1 = α 1 , β 2 = α 1 + α 2 , β 3 = α 1 + α 2 + α 3 \beta_1 = \alpha_1, \beta_2 = \alpha_1 + \alpha_2, \beta_3 = \alpha_1 + \alpha_2 + \alpha_3 β1=α1,β2=α1+α2,β3=α1+α2+α3 下的矩阵表示.
(2) 求在基 β 1 , β 2 , β 3 \beta_1, \beta_2, \beta_3 β1,β2,β3 下的核与值域.

解:
(1)由题意知
A [ α 1 , α 2 , α 3 ] = [ α 1 , α 2 , α 3 ] A A[\alpha_1, \alpha_2, \alpha_3] = [\alpha_1, \alpha_2, \alpha_3]A A[α1,α2,α3]=[α1,α2,α3]A
A A A 在基 β 1 , β 2 , β 3 \beta_1, \beta_2, \beta_3 β1,β2,β3 下的矩阵表示是 B B B,则
[ β 1 , β 2 , β 3 ] = [ α 1 , α 2 , α 3 ] [ 1 0 0 1 1 0 1 1 1 ] [\beta_1, \beta_2, \beta_3] = [\alpha_1, \alpha_2, \alpha_3] \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} [β1,β2,β3]=[α1,α2,α3] 111011001
B = P − 1 A P B = P^{-1}AP B=P1AP
其中 P = [ 1 0 0 1 1 0 1 1 1 ] P = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} P= 111011001

(2)由于 det ⁡ ( A ) ≠ 0 \det(A) \neq 0 det(A)=0,故 A X = 0 AX = 0 AX=0 只有零解,所以 A A A 的核空间是零空间,维数为0,由维数定理可知 A A A 的值域是线性空间 R 3 R^3 R3,维数为3。

3. 例2.1 写出不变因子,行列式因子以及初等因子

例2.1

求下列 λ \lambda λ-矩阵的 Smith 标准形。
(1)
[ 2 − 1 2 4 − 1 3 4 2 8 ] \begin{bmatrix} 2 & -1 & 2 \\ 4 & -1 & 3 \\ 4 & 2 & 8 \end{bmatrix} 244112238
(2)
[ − λ + 1 λ 2 λ − 1 λ 2 ] \begin{bmatrix} -\lambda + 1 & \lambda \\ 2\lambda - 1 & \lambda^2 \end{bmatrix} [λ+12λ1λλ2]
(3)
[ λ 2 λ + 4 0 1 λ + 4 0 0 0 λ + 4 ] \begin{bmatrix} \lambda^2 & \lambda + 4 & 0 \\ 1 & \lambda + 4 & 0 \\ 0 & 0 & \lambda + 4 \end{bmatrix} λ210λ+4λ+4000λ+4

解:
(1)行列式因子
D 1 ( λ ) = 1 , D 2 ( λ ) = λ , D 3 ( λ ) = λ ( ( 2 λ − 1 ) ( − λ ) − ( λ ) ( λ + λ − 1 ) ) − λ ( ( − λ + 1 ) ( − λ ) − ( λ ) ( λ + 1 ) ) − 2 ( ( − λ + 1 ) ( λ + λ − 1 ) − ( 2 λ − 1 ) ( λ + 1 ) ) D_1(\lambda) = 1, \quad D_2(\lambda) = \lambda, \quad D_3(\lambda) = \lambda((2\lambda - 1)(-\lambda) - (\lambda)(\lambda + \lambda - 1)) - \lambda((-\lambda + 1)(-\lambda) - (\lambda)(\lambda + 1)) - 2((-\lambda + 1)(\lambda + \lambda - 1) - (2\lambda - 1)(\lambda + 1)) D1(λ)=1,D2(λ)=λ,D3(λ)=λ((2λ1)(λ)(λ)(λ+λ1))λ((λ+1)(λ)(λ)(λ+1))2((λ+1)(λ+λ1)(2λ1)(λ+1))
= λ ( − 3 λ 2 + 1 ) − ( − λ 2 − λ ) − ( − 3 λ 2 + λ ) = \lambda(-3\lambda^2 + 1) - (-\lambda^2 - \lambda) - (-3\lambda^2 + \lambda) =λ(3λ2+1)(λ2λ)(3λ2+λ)
= λ ( λ 2 + 1 ) = \lambda(\lambda^2 + 1) =λ(λ2+1)
于是不变因子
d 1 ( x ) = D 1 ( λ ) = 1 , d 2 ( x ) = D 2 ( λ ) D 1 ( λ ) = λ , d 3 ( x ) = D 3 ( λ ) D 2 ( λ ) = λ 2 + 1 d_1(x) = D_1(\lambda) = 1, \quad d_2(x) = \frac{D_2(\lambda)}{D_1(\lambda)} = \lambda, \quad d_3(x) = \frac{D_3(\lambda)}{D_2(\lambda)} = \lambda^2 + 1 d1(x)=D1(λ)=1,d2(x)=D1(λ)D2(λ)=λ,d3(x)=D2(λ)D3(λ)=λ2+1
从而其 Smith 标准形为
[ 1 0 0 0 λ 0 0 0 λ 2 + 1 ] \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda^2 + 1 \end{bmatrix} 1000λ000λ2+1
初等因子为 λ , λ 2 + 1 \lambda, \lambda^2 + 1 λ,λ2+1

(2)行列式因子
D 1 ( λ ) = λ − 1 , D 2 ( λ ) = ( λ − 1 ) ( λ + 1 ) D_1(\lambda) = \lambda - 1, \quad D_2(\lambda) = (\lambda - 1)(\lambda + 1) D1(λ)=λ1,D2(λ)=(λ1)(λ+1)
于是不变因子
d 1 ( x ) = D 1 ( λ ) = λ − 1 , d 2 ( x ) = D 2 ( λ ) D 1 ( λ ) = λ + 1 d_1(x) = D_1(\lambda) = \lambda - 1, \quad d_2(x) = \frac{D_2(\lambda)}{D_1(\lambda)} = \lambda + 1 d1(x)=D1(λ)=λ1,d2(x)=D1(λ)D2(λ)=λ+1
从而其 Smith 标准形为
[ λ − 1 0 0 λ + 1 ] \begin{bmatrix} \lambda - 1 & 0 \\ 0 & \lambda + 1 \end{bmatrix} [λ100λ+1]
初等因子为 λ − 1 , λ + 1 \lambda - 1, \lambda + 1 λ1,λ+1

(3)行列式因子
D 1 ( λ ) = 1 , D 2 ( λ ) = 1 , D 3 ( λ ) = ( λ + 4 ) 3 D_1(\lambda) = 1, \quad D_2(\lambda) = 1, \quad D_3(\lambda) = (\lambda + 4)^3 D1(λ)=1,D2(λ)=1,D3(λ)=(λ+4)3
于是不变因子
d 1 ( x ) = D 1 ( λ ) = 1 , d 2 ( x ) = D 2 ( λ ) D 1 ( λ ) = 1 , d 3 ( x ) = D 3 ( λ ) D 2 ( λ ) = ( λ + 4 ) 3 d_1(x) = D_1(\lambda) = 1, \quad d_2(x) = \frac{D_2(\lambda)}{D_1(\lambda)} = 1, \quad d_3(x) = \frac{D_3(\lambda)}{D_2(\lambda)} = (\lambda + 4)^3 d1(x)=D1(λ)=1,d2(x)=D1(λ)D2(λ)=1,d3(x)=D2(λ)D3(λ)=(λ+4)3
从而其 Smith 标准形为
[ 1 0 0 0 1 0 0 0 ( λ + 4 ) 3 ] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda + 4)^3 \end{bmatrix} 10001000(λ+4)3
初等因子为 ( λ + 4 ) 3 (\lambda + 4)^3 (λ+4)3

4. 求方阵的 Jordan 标准型及其相似变换矩阵,见矩阵论第二章PPT

例1

求方阵
A = [ 3 − 2 0 0 − 1 0 8 6 − 5 ] A = \begin{bmatrix} 3 & -2 & 0 \\ 0 & -1 & 0 \\ 8 & 6 & -5 \end{bmatrix} A= 308216005
的 Jordan 标准形及其相似变换矩阵 P P P

解:
故行列式因子
D 1 ( λ ) = 1 , D 2 ( λ ) = λ + 1 , D 3 ( λ ) = ( λ + 1 ) 3 D_1(\lambda) = 1, \quad D_2(\lambda) = \lambda + 1, \quad D_3(\lambda) = (\lambda + 1)^3 D1(λ)=1,D2(λ)=λ+1,D3(λ)=(λ+1)3
不变因子为
d 1 ( x ) = D 1 ( λ ) = 1 , d 2 ( x ) = D 2 ( λ ) D 1 ( λ ) = λ + 1 , d 3 ( x ) = D 3 ( λ ) D 2 ( λ ) = ( λ + 1 ) 2 d_1(x) = D_1(\lambda) = 1, \quad d_2(x) = \frac{D_2(\lambda)}{D_1(\lambda)} = \lambda + 1, \quad d_3(x) = \frac{D_3(\lambda)}{D_2(\lambda)} = (\lambda + 1)^2 d1(x)=D1(λ)=1,d2(x)=D1(λ)D2(λ)=λ+1,d3(x)=D2(λ)D3(λ)=(λ+1)2
初等因子为
λ + 1 , ( λ + 1 ) 2 \lambda + 1, (\lambda + 1)^2 λ+1,(λ+1)2
故 Jordan 标准形为
J = [ − 1 0 0 0 − 1 1 0 0 − 1 ] J = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix} J= 100010011
设相似变换矩阵 P P P 使得 P − 1 A P = J P^{-1}AP = J P1AP=J,则
( A X 1 , A X 2 , A X 3 ) = ( − X 1 , − X 2 , X 2 − X 3 ) (AX_1, AX_2, AX_3) = (-X_1, -X_2, X_2 - X_3) (AX1,AX2,AX3)=(X1,X2,X2X3)
解齐次方程组 ( A + I ) X = 0 (A + I)X = 0 (A+I)X=0,即
[ 4 − 2 0 0 0 0 8 6 − 4 ] [ x 1 x 2 x 3 ] = 0 \begin{bmatrix} 4 & -2 & 0 \\ 0 & 0 & 0 \\ 8 & 6 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 408206004 x1x2x3 =0
解之得一个基础解系为
[ 0 , 1 , 0 ] T , [ − 2 , 0 , 1 ] T [0, 1, 0]^T, [−2, 0, 1]^T [0,1,0]T,[2,0,1]T
X 1 = [ 0 , 1 , 0 ] T X_1 = [0, 1, 0]^T X1=[0,1,0]T
X 2 = k 1 [ 0 , 1 , 0 ] T + k 2 [ − 2 , 0 , 1 ] T = [ − 2 k 2 , k 1 , k 2 ] T X_2 = k_1[0, 1, 0]^T + k_2[-2, 0, 1]^T = [-2k_2, k_1, k_2]^T X2=k1[0,1,0]T+k2[2,0,1]T=[2k2,k1,k2]T
X 2 X_2 X2 的取法应使非齐次线性方程组 ( A + I ) X = X 2 (A + I)X = X_2 (A+I)X=X2 有解。把增广矩阵经过初等行变换化为阶梯形矩阵:
[ 4 − 2 0 − 2 k 2 0 0 0 k 1 8 6 − 4 k 2 ] → [ 1 0 0 − k 2 2 0 1 0 3 k 2 2 0 0 1 0 ] \begin{bmatrix} 4 & -2 & 0 & -2k_2 \\ 0 & 0 & 0 & k_1 \\ 8 & 6 & -4 & k_2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -\frac{k_2}{2} \\ 0 & 1 & 0 & \frac{3k_2}{2} \\ 0 & 0 & 1 & 0 \end{bmatrix} 4082060042k2k1k2 1000100012k223k20
为了使得非齐次线性方程组 ( A + I ) X = X 2 (A + I)X = X_2 (A+I)X=X2 有解,应取 k 1 + 3 k 2 2 = 0 k_1 + \frac{3k_2}{2} = 0 k1+23k2=0,于是取 k 2 = 1 k_2 = 1 k2=1 k 1 = − 3 2 k_1 = -\frac{3}{2} k1=23,故 X 2 = [ − 2 , − 3 2 , 1 ] T X_2 = [-2, -\frac{3}{2}, 1]^T X2=[2,23,1]T

解非齐次线性方程组 ( A + I ) X = X 2 (A + I)X = X_2 (A+I)X=X2 得一个特解为
X 3 = [ − 1 2 , 0 , 0 ] T X_3 = [-\frac{1}{2}, 0, 0]^T X3=[21,0,0]T
故相似变换矩阵
P = [ X 1 , X 2 , X 3 ] = [ 0 − 2 − 1 2 1 − 3 2 0 0 1 0 ] P = [X_1, X_2, X_3] = \begin{bmatrix} 0 & -2 & -\frac{1}{2} \\ 1 & -\frac{3}{2} & 0 \\ 0 & 1 & 0 \end{bmatrix} P=[X1,X2,X3]= 01022312100

例2

求方阵
A = [ − 1 − 1 − 1 − 2 0 − 1 6 3 4 ] A = \begin{bmatrix} -1 & -1 & -1 \\ -2 & 0 & -1 \\ 6 & 3 & 4 \end{bmatrix} A= 126103114
的 Jordan 标准形及其相似变换矩阵 P P P

解:
故行列式因子
D 1 ( λ ) = 1 , D 2 ( λ ) = λ − 1 , D 3 ( λ ) = ( λ − 1 ) 3 D_1(\lambda) = 1, \quad D_2(\lambda) = \lambda - 1, \quad D_3(\lambda) = (\lambda - 1)^3 D1(λ)=1,D2(λ)=λ1,D3(λ)=(λ1)3
不变因子为
d 1 ( x ) = D 1 ( λ ) = 1 , d 2 ( x ) = D 2 ( λ ) D 1 ( λ ) = λ − 1 , d 3 ( x ) = D 3 ( λ ) D 2 ( λ ) = ( λ − 1 ) 2 d_1(x) = D_1(\lambda) = 1, \quad d_2(x) = \frac{D_2(\lambda)}{D_1(\lambda)} = \lambda - 1, \quad d_3(x) = \frac{D_3(\lambda)}{D_2(\lambda)} = (\lambda - 1)^2 d1(x)=D1(λ)=1,d2(x)=D1(λ)D2(λ)=λ1,d3(x)=D2(λ)D3(λ)=(λ1)2
初等因子为
λ − 1 , ( λ − 1 ) 2 \lambda - 1, (\lambda - 1)^2 λ1,(λ1)2
故 Jordan 标准形为
J = [ 1 0 0 0 1 1 0 0 1 ] J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} J= 100010011
设相似变换矩阵 P P P 使得 P − 1 A P = J P^{-1}AP = J P1AP=J,则
( A X 1 , A X 2 , A X 3 ) = ( X 1 , X 2 , X 2 + X 3 ) (AX_1, AX_2, AX_3) = (X_1, X_2, X_2 + X_3) (AX1,AX2,AX3)=(X1,X2,X2+X3)
解齐次方程组 ( A − I ) X = 0 (A - I)X = 0 (AI)X=0,即
[ − 2 − 1 − 1 − 2 − 1 − 1 6 3 3 ] [ x 1 x 2 x 3 ] = 0 \begin{bmatrix} -2 & -1 & -1 \\ -2 & -1 & -1 \\ 6 & 3 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 226113113 x1x2x3 =0
解之得一个基础解系为
[ − 1 , 1 , 0 ] T , [ 3 , 0 , 1 ] T [-1, 1, 0]^T, [3, 0, 1]^T [1,1,0]T,[3,0,1]T
X 1 = [ − 1 , 1 , 0 ] T X_1 = [-1, 1, 0]^T X1=[1,1,0]T
X 2 = k 1 [ − 1 , 1 , 0 ] T + k 2 [ 3 , 0 , 1 ] T = [ − k 1 + 3 k 2 , k 1 , k 2 ] T X_2 = k_1[-1, 1, 0]^T + k_2[3, 0, 1]^T = [-k_1 + 3k_2, k_1, k_2]^T X2=k1[1,1,0]T+k2[3,0,1]T=[k1+3k2,k1,k2]T
X 2 X_2 X2 的取法应使非齐次线性方程组 ( A − I ) X = X 2 (A - I)X = X_2 (AI)X=X2 有解。把增广矩阵经过初等行变换化为阶梯形矩阵:
[ − 2 − 1 − 1 − k 1 + 3 k 2 − 2 − 1 − 1 k 1 6 3 3 k 2 ] → [ 1 0 0 k 1 2 − 3 k 2 2 0 1 0 3 k 1 2 − 3 k 2 2 0 0 1 k 1 2 − k 2 2 ] \begin{bmatrix} -2 & -1 & -1 & -k_1 + 3k_2 \\ -2 & -1 & -1 & k_1 \\ 6 & 3 & 3 & k_2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & \frac{k_1}{2} - \frac{3k_2}{2} \\ 0 & 1 & 0 & \frac{3k_1}{2} - \frac{3k_2}{2} \\ 0 & 0 & 1 & \frac{k_1}{2} - \frac{k_2}{2} \end{bmatrix} 226113113k1+3k2k1k2 1000100012k123k223k123k22k12k2
为了使得非齐次线性方程组 ( A − I ) X = X 2 (A - I)X = X_2 (AI)X=X2 有解,应取 k 1 = k 2 k_1 = k_2 k1=k2,于是取 k 1 = k 2 = 1 k_1 = k_2 = 1 k1=k2=1,故 X 2 = [ 2 , 1 , 1 ] T X_2 = [2, 1, 1]^T X2=[2,1,1]T

解非齐次线性方程组 ( A − I ) X = X 2 (A - I)X = X_2 (AI)X=X2 得一个特解为
X 3 = [ − 1 , 0 , 0 ] T X_3 = [-1, 0, 0]^T X3=[1,0,0]T
故相似变换矩阵
P = [ X 1 , X 2 , X 3 ] = [ − 1 2 − 1 1 1 0 0 1 0 ] P = [X_1, X_2, X_3] = \begin{bmatrix} -1 & 2 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} P=[X1,X2,X3]= 110211100

5. 计算某欧氏空间度量矩阵以及该空间两向量内积。例子3.3

例3.3

在线性空间 R [ x ] 3 R[x]_3 R[x]3 中定义内积
( f ( x ) , g ( x ) ) = ∫ − 1 1 f ( x ) g ( x ) d x (f(x), g(x)) = \int_{-1}^{1} f(x)g(x)dx (f(x),g(x))=11f(x)g(x)dx
那么 R [ x ] 3 R[x]_3 R[x]3 构成欧氏空间。

(1) 求基 { 1 , x , x 2 } \{1, x, x^2\} {1,x,x2} 的度量矩阵;
(2) 求 f ( x ) = 1 − x + x 2 f(x) = 1 - x + x^2 f(x)=1x+x2 g ( x ) = 1 − 4 x − 5 x 2 g(x) = 1 - 4x - 5x^2 g(x)=14x5x2 的内积。

解:
(1)设基 { 1 , x , x 2 } \{1, x, x^2\} {1,x,x2} 的度量矩阵为 A A A,根据乘法交换律可知为对称矩阵,故
A = [ ( 1 , 1 ) ( 1 , x ) ( 1 , x 2 ) ( 1 , x ) ( x , x ) ( x , x 2 ) ( 1 , x 2 ) ( x , x 2 ) ( x 2 , x 2 ) ] A = \begin{bmatrix} (1, 1) & (1, x) & (1, x^2) \\ (1, x) & (x, x) & (x, x^2) \\ (1, x^2) & (x, x^2) & (x^2, x^2) \end{bmatrix} A= (1,1)(1,x)(1,x2)(1,x)(x,x)(x,x2)(1,x2)(x,x2)(x2,x2)
根据定义可知:
( 1 , 1 ) = ∫ − 1 1 1 ⋅ 1 d x = 2 , ( 1 , x ) = ∫ − 1 1 1 ⋅ x d x = 0 , ( 1 , x 2 ) = ∫ − 1 1 1 ⋅ x 2 d x = 2 3 , ( x , x ) = ∫ − 1 1 x ⋅ x d x = 2 3 , ( x , x 2 ) = ∫ − 1 1 x ⋅ x 2 d x = 0 , ( x 2 , x 2 ) = ∫ − 1 1 x 2 ⋅ x 2 d x = 2 5 (1, 1) = \int_{-1}^{1} 1 \cdot 1 dx = 2, \quad (1, x) = \int_{-1}^{1} 1 \cdot x dx = 0, \quad (1, x^2) = \int_{-1}^{1} 1 \cdot x^2 dx = \frac{2}{3}, \\ (x, x) = \int_{-1}^{1} x \cdot x dx = \frac{2}{3}, \quad (x, x^2) = \int_{-1}^{1} x \cdot x^2 dx = 0, (x^2, x^2) = \int_{-1}^{1} x^2 \cdot x^2 dx = \frac{2}{5} (1,1)=1111dx=2,(1,x)=111xdx=0,(1,x2)=111x2dx=32,(x,x)=11xxdx=32,(x,x2)=11xx2dx=0,(x2,x2)=11x2x2dx=52

因此,度量矩阵 A A A
A = [ 2 0 2 3 0 2 3 0 2 3 0 2 5 ] A = \begin{bmatrix} 2 & 0 & \frac{2}{3} \\ 0 & \frac{2}{3} & 0 \\ \frac{2}{3} & 0 & \frac{2}{5} \end{bmatrix} A= 2032032032052

(2)因为 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 在基 { 1 , x , x 2 } \{1, x, x^2\} {1,x,x2} 下的坐标分别为 X = [ 1 , − 1 , 1 ] T X = [1, -1, 1]^T X=[1,1,1]T Y = [ 1 , − 4 , − 5 ] T Y = [1, -4, -5]^T Y=[1,4,5]T,所以
( f ( x ) , g ( x ) ) = X T A Y = [ 1 , − 1 , 1 ] [ 2 0 2 3 0 2 3 0 2 3 0 2 5 ] [ 1 − 4 − 5 ] (f(x), g(x)) = X^T A Y = [1, -1, 1] \begin{bmatrix} 2 & 0 & \frac{2}{3} \\ 0 & \frac{2}{3} & 0 \\ \frac{2}{3} & 0 & \frac{2}{5} \end{bmatrix} \begin{bmatrix} 1 \\ -4 \\ -5 \end{bmatrix} (f(x),g(x))=XTAY=[1,1,1] 2032032032052 145

计算上述矩阵乘法:
( f ( x ) , g ( x ) ) = [ 1 , − 1 , 1 ] [ 2 ⋅ 1 + 0 ⋅ ( − 4 ) + 2 3 ⋅ ( − 5 ) 0 ⋅ 1 + 2 3 ⋅ ( − 4 ) + 0 ⋅ ( − 5 ) 2 3 ⋅ 1 + 0 ⋅ ( − 4 ) + 2 5 ⋅ ( − 5 ) ] = [ 1 , − 1 , 1 ] [ 2 − 10 3 − 8 3 2 3 − 2 ] = [ 1 , − 1 , 1 ] [ − 4 3 − 8 3 − 4 3 ] = 1 ⋅ ( − 4 3 ) + ( − 1 ) ⋅ ( − 8 3 ) + 1 ⋅ ( − 4 3 ) = − 4 3 + 8 3 − 4 3 = 0 \begin{align*} (f(x), g(x)) &= [1, -1, 1] \begin{bmatrix} 2 \cdot 1 + 0 \cdot (-4) + \frac{2}{3} \cdot (-5) \\ 0 \cdot 1 + \frac{2}{3} \cdot (-4) + 0 \cdot (-5) \\ \frac{2}{3} \cdot 1 + 0 \cdot (-4) + \frac{2}{5} \cdot (-5) \end{bmatrix} \\ &= [1, -1, 1] \begin{bmatrix} 2 - \frac{10}{3} \\ -\frac{8}{3} \\ \frac{2}{3} - 2 \end{bmatrix} \\ &= [1, -1, 1] \begin{bmatrix} -\frac{4}{3} \\ -\frac{8}{3} \\ -\frac{4}{3} \end{bmatrix} \\ &= 1 \cdot \left(-\frac{4}{3}\right) + (-1) \cdot \left(-\frac{8}{3}\right) + 1 \cdot \left(-\frac{4}{3}\right) \\ &= -\frac{4}{3} + \frac{8}{3} - \frac{4}{3} \\ &= 0 \end{align*} (f(x),g(x))=[1,1,1] 21+0(4)+32(5)01+32(4)+0(5)321+0(4)+52(5) =[1,1,1] 231038322 =[1,1,1] 343834 =1(34)+(1)(38)+1(34)=34+3834=0

因此, f ( x ) f(x) f(x) g ( x ) g(x) g(x) 的内积为 0。

总结

以上是矩阵论复习的前三章重点内容,涵盖了线性空间、线性变换、不变子空间、过渡矩阵、酉空间、正交矩阵、酉矩阵、正交变换、酉变换、正规矩阵及其结构定理、证明题和计算题等内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值