分糖问题和插板法:10个相同糖果分给3个小朋友,有几种分法?

本文通过插板法解析了四种糖果分配问题,包括每个孩子至少得一个糖果、无限制条件、至少得两个糖果以及特定数量限制的情况,并给出了详细的解题思路及答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【1】、10个相同的糖果,分给3个孩子A、B、C,每个孩子至少一个,有多少种不同的分法?

【2】、10个相同的糖果,分给3个孩子A、B、C,有多少种不同的分法?

【3】、10个相同的糖果,分给3个孩子A、B、C,每个孩子至少2个,有多少种不同的分法?

【4】、10个相同的糖果,分给3个孩子A、B、C,A至少一个,B至少2个,C可以没有,有多少种不同的分法?

【答案】

【1】第一题是最为典型的插板法的题目。10个糖果排成一排,共形成9个空,我从这9个空里选两个,插入隔板,便把这10个糖果分成了三份,每份起码有一个,这样的话,方法数就是C(9,2)=36。

【2】、与第一题不同,这里没有限制孩子获得的数量,意味着有些孩子可以分到0个。那么这时候就不能直接用插板法了,必须转化成每个孩子至少得到1个。怎么转化呢?

很简单,分这10个糖果之前就给每个小朋友1个糖果,这样就保证分的时候每个小朋友至少分一个了,就可以用插板法了,只不过这时的题就变成了“10+3=13个相同的糖果,分给3个孩子A、B、C,每个孩子至少一个,有多少种不同的分法?”.

13个糖果12个空,分成三组插两块板,方法数就是C(12,2)=66。

【3】.不能直接插板,需要先将至少2个转化成至少1个,咋转化?先给每人1个,剩下的至少每人一个就搞定啦!题目变为“10-1×3=7个相同的糖果,分给3个孩子A、B、C,每个孩子至少一个,有多少种不同的分法?”

7个糖果6个空,分成三组插两块板,方法数就是C(6,2)=15。

【4】此题综合了这几类题型,还是转化:A满足不用管;B至少2个,需要先分掉1个;C可以不分,那就借一个给他。 10-1+1=10,题目变成第一小题了,答案还是36.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值