【题目】
Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.
For example,
Given [3,2,1,5,6,4]
and k = 2, return 5.
Note:
You may assume k is always valid, 1 ≤ k ≤ array's length.
【思路】
quick sort
【代码】
平均 O(n)
public class Solution {
public int findKthLargest(int[] a, int k) {
int n = a.length;
int p = quickSelect(a, 0, n - 1, n - k + 1);
return a[p];
}
// return the index of the kth smallest number
int quickSelect(int[] a, int lo, int hi, int k) {
// use quick sort's idea
// put nums that are <= pivot to the left
// put nums that are > pivot to the right
int i = lo, j = hi, pivot = a[hi];
while (i < j) {
if (a[i++] > pivot) swap(a, --i, --j);
}
swap(a, i, hi);
// count the nums that are <= pivot from lo
int m = i - lo + 1;
// pivot is the one!
if (m == k) return i;
// pivot is too big, so it must be on the left
else if (m > k) return quickSelect(a, lo, i - 1, k);
// pivot is too small, so it must be on the right
else return quickSelect(a, i + 1, hi, k - m);
}
void swap(int[] a, int i, int j) {
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
}
- O(N lg N) running time + O(1) memory
The simplest approach is to sort the entire input array and then access the element by it's index (which is O(1)) operation:
public int findKthLargest(int[] nums, int k) {
final int N = nums.length;
Arrays.sort(nums);
return nums[N - k];
}
- O(N lg K) running time + O(K) memory
Other possibility is to use a min oriented priority queue that will store the K-th largest values. The algorithm iterates over the whole input and maintains the size of priority queue.
public int findKthLargest(int[] nums, int k) {
final PriorityQueue<Integer> pq = new PriorityQueue<>();
for(int val : nums) {
pq.offer(val);
if(pq.size() > k) {
pq.poll();
}
}
return pq.peek();
}
- O(N) best case / O(N^2) worst case running time + O(1) memory
The smart approach for this problem is to use the selection algorithm (based on the partion method - the same one as used in quicksort).
public int findKthLargest(int[] nums, int k) {
k = nums.length - k;
int lo = 0;
int hi = nums.length - 1;
while (lo < hi) {
final int j = partition(nums, lo, hi);
if(j < k) {
lo = j + 1;
} else if (j > k) {
hi = j - 1;
} else {
break;
}
}
return nums[k];
}
private int partition(int[] a, int lo, int hi) {
int i = lo;
int j = hi + 1;
while(true) {
while(i < hi && less(a[++i], a[lo]));
while(j > lo && less(a[lo], a[--j]));
if(i >= j) {
break;
}
exch(a, i, j);
}
exch(a, lo, j);
return j;
}
private void exch(int[] a, int i, int j) {
final int tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
private boolean less(int v, int w) {
return v < w;
}
O(N) guaranteed running time + O(1) space
So how can we improve the above solution and make it O(N) guaranteed? The answer is quite simple, we can randomize the input, so that even when the worst case input would be provided the algorithm wouldn't be affected. So all what it is needed to be done is to shuffle the input.
public int findKthLargest(int[] nums, int k) {
shuffle(nums);
k = nums.length - k;
int lo = 0;
int hi = nums.length - 1;
while (lo < hi) {
final int j = partition(nums, lo, hi);
if(j < k) {
lo = j + 1;
} else if (j > k) {
hi = j - 1;
} else {
break;
}
}
return nums[k];
}
private void shuffle(int a[]) {
final Random random = new Random();
for(int ind = 1; ind < a.length; ind++) {
final int r = random.nextInt(ind + 1);
exch(a, ind, r);
}
}