这是智能视觉采集大作业的主要程序
- 目的:从视频拍摄中得到全景图,包括离线的和在线的.
- 过程:特征点提取匹配-图片射影变换-图片合成
(1)特征点提取匹配:ORB算法
(2)图片合成的方法分为两种,第一种是离线的,第二种是在线的(个人提出的拙劣的算法).
1.离线合成
离线部分和在线部分有一个不同的是图片合成算法.
- 对于在线合成,速度时比较重要的,所以这里对于前后两帧的图片采用
I m g t ( i , j ) = m a x { n e w I m g t ( i , j ) , I m g t − 1 ( i , j ) } Img_t(i,j)=max\{newImg_t(i,j),Img_{t-1}(i,j)\} Imgt(i,j)=max{newImgt(i,j),Imgt−1(i,j)}
采用这种算法的原因是,新的图像经过射影变换后,在图片上会留有黑色的空位.需要通过依旧求得的全景图的部分对其进行填充. - 对于离线合成,精确度是比较重要的,所以这里采用下述算法
I m g t ( i , j ) = { m a x { n e w I m g t ( i , j ) , I m g t − 1 ( i , j ) } , n e w I m g t ( i , j ) < k α n e w I m g t ( i , j ) + β I m g t − 1 ( i , j ) , n e w I m g t ( i , j ) > = k Img_t(i,j)=\begin{cases}max\{newImg_t(i,j),Img_{t-1}(i,j)\},&newImg_t(i,j)<k \\ \alpha newImg_t(i,j)+\beta Img_{t-1}(i,j),&newImg_t(i,j)>=k \end{cases} Imgt(i,j)={max{newImgt(i,j),Imgt−1(i,j)},αnewImgt(i,j)+βImgt−1(i,j),newImgt(i,j)<knewImgt(i,j)>=k
其中 α + β = 1 \alpha+\beta=1 α+β=1
由于图片经过变换后可能会产生部分没有对齐的情况,如果仍然采用离线的算法,将会导致黑色的物体在图像中渐渐的被掩盖掉(最典型的就是头发在全景图的生成过程中渐渐的消失).所以一般来说,在全景图的生成过程中都会使用新图和旧图乘一个系数合成的方法.同时我们仍然需要考虑到,新图经过射影变换后留有黑色空位的情况.所以,在该算法中,需要对新图的某个像素是黑色空位还是其他的情况进行区分,即设一个阈值k,用新图的像素与阈值进行比较.小于阈值,则进行加系数融合;如果大于阈值,则取最大值,消去黑色空位.
离线部分代码
#include <iostream>
#include <sstream>
#include <string>
#include <ctime>
#include <cstdio>
#include <vector>
#include <opencv2/opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/video/background_segm.hpp>
using namespace cv;
using namespace std;
int main(){
VideoCapture input=VideoCapture("input5.mp4");
if(input.isOpened()){
cout<<"input sucess"<<endl;
}
else{
cout<<"fail input"<<endl;
return 0;
}
Mat view;
int cnt=0;
vector<Mat> calibrate_images;
vector<Mat> calibrate_descriptors;
vector<vector<KeyPoint> > calibrate_keypoints;
Mat dst(720+100,1280*6, CV_8UC3);dst.setTo(0);
Mat save_homo;
while(1){
if(!input.read(view)) break;
//cout<<view.size<<endl;
std::vector<KeyPoint> keypoints;
Mat descriptors;
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
//Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create ( "BruteForce-Hamming" );
detector->detect ( view,keypoints );
descriptor->compute ( view, keypoints, descriptors );
Mat outimg;
calibrate_keypoints.push_back(keypoints);
calibrate_descriptors.push_back(descriptors);
drawKeypoints( view, keypoints, outimg, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
//imshow("ORB特征点",outimg);
//imshow("input", view);
//cv::waitKey(10000);
calibrate_images.push_back(view);
if(view.rows==0) break;
if(cnt>=1){
//the first 15 images will be used calidate.
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create ( "BruteForce-Hamming" );
vector<DMatch> matches;
Mat img_match;
//BFMatcher matcher ( NORM_HAMMING );
matcher->match ( calibrate_descriptors[cnt-1], calibrate_descriptors[cnt], matches );
//optimize
double min_dist=10000, max_dist=0;
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for ( int i = 0; i < calibrate_descriptors[cnt-1].rows; i++ )
{
double dist = matches[i].distance;
if ( dist < min_dist ) min_dist = dist;
if ( dist > max_dist ) max_dist = dist;
}
std::vector< DMatch > good_matches;
for ( int i = 0; i < calibrate_descriptors[cnt-1].rows; i++ )
{
if ( matches[i].distance <= max ( 2*min_dist, 30.0 ) )
{
good_matches.push_back ( matches[i] );
}
}
drawMatches ( calibrate_images[cnt-1], calibrate_keypoints[cnt-1], calibrate_images[cnt], calibrate_keypoints[cnt], good_matches, img_match );
//imshow("ORB特征点2",img_match);
//calibrate here
//**********************************************//
vector<Point2f> imagePoints1, imagePoints2;
for (int i = 0; i<good_matches.size(); i++)
{
imagePoints2.push_back(calibrate_keypoints[cnt-1][good_matches[i].queryIdx].pt);
imagePoints1.push_back(calibrate_keypoints[cnt][good_matches[i].trainIdx].pt);
}
Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
if(cnt==1) save_homo=homo.clone();
else save_homo=save_homo*homo;
homo=save_homo;
// cout<<homo<<endl;
Mat imageTransform;
warpPerspective(calibrate_images[cnt], imageTransform, homo, Size(calibrate_images[cnt].cols+1000, calibrate_images[cnt].rows+100));
//imshow("直接经过透视矩阵变换", imageTransform);
//imwrite("trans1.jpg", imageTransform);
int dst_width = imageTransform.cols; //取最右点的长度为拼接图的长度
int dst_height =calibrate_images[cnt].rows;
Mat tem_dst(720+100,1280*6, CV_8UC3);tem_dst.setTo(0);
imageTransform.copyTo(tem_dst(Rect(0, 0, imageTransform.cols, imageTransform.rows)));
Mat tem_dst2=dst.clone();
//calibrate_images[cnt].copyTo(dst(Rect(0, 0, calibrate_images[cnt].cols, calibrate_images[cnt].rows)));
//max(tem_dst,tem_dst2,dst);
//addWeighted(tem_dst, 0.1,tem_dst2,0.9, 0, dst);
for (int j = 0; j < tem_dst.rows; j++) {
for (int k = 0; k < tem_dst.cols; k++) {
for (int m = 0; m < 3; m++) {
if (tem_dst.at<Vec3b>(j, k)[m] <= 130) {
dst.at<Vec3b>(j, k)[m] = max(tem_dst2.at<Vec3b>(j, k)[m], tem_dst.at<Vec3b>(j, k)[m]);
}
else {
dst.at<Vec3b>(j, k)[m] = (tem_dst2.at<Vec3b>(j, k)[m]*5+ tem_dst.at<Vec3b>(j, k)[m]*5)/10;
}
}
// cout<< tem_dst.at
//if(tem_dst.at)
}
}
imshow("b_dst", dst);cv::waitKey(1000);
}
for(int i=0;i<5;i++){
input.read(view);
}
cnt++;
}
cv::waitKey(1000000);
cout<<cnt<<endl;
}
2.在线合成
在线合成前面已经提到了图像融合的算法.除此之外,在线和成主要是使用basler相机的代码.代码如下
#include <pylon/PylonIncludes.h>
#ifdef PYLON_WIN_BUILD
# include <pylon/PylonGUI.h>
#endif
#include <opencv2/opencv.hpp>
// Namespace for using pylon objects.
using namespace Pylon;
// Namespace for using cout.
using namespace std;
using namespace cv;
// Number of images to be grabbed.
static const uint32_t c_countOfImagesToGrab = 1000;
int main(int argc, char* argv[])
{
// The exit code of the sample application.
int exitCode = 0;
// Before using any pylon methods, the pylon runtime must be initialized.
PylonInitialize();
Mat frame;
//****************************************************
//[2592 x 1944]
Mat view;
int cnt = 0;
vector<Mat> calibrate_images;
vector<Mat> calibrate_descriptors;
vector<vector<KeyPoint> > calibrate_keypoints;
Mat dst(194 + 50, 259 * 10, CV_8UC3); dst.setTo(0);
Mat save_homo;
//****************************************************
try
{
// Create an instant camera object with the camera device found first.
CInstantCamera camera(CTlFactory::GetInstance().CreateFirstDevice());
// Print the model name of the camera.
cout << "Using device " << camera.GetDeviceInfo().GetModelName() << endl;
// The parameter MaxNumBuffer can be used to control the count of buffers
// allocated for grabbing. The default value of this parameter is 10.
camera.MaxNumBuffer = 5;
// Start the grabbing of c_countOfImagesToGrab images.
// The camera device is parameterized with a default configuration which
// sets up free-running continuous acquisition.
camera.StartGrabbing(c_countOfImagesToGrab);
// This smart pointer will receive the grab result data.
CGrabResultPtr ptrGrabResult;
/// new image that convert to cv::Mat
CImageFormatConverter formatConverter;
formatConverter.OutputPixelFormat = PixelType_BGR8packed;
CPylonImage pylonImage;
// Camera.StopGrabbing() is called automatically by the RetrieveResult() method
// when c_countOfImagesToGrab images have been retrieved.
char c;
while (c = waitKey(1) && camera.IsGrabbing())
{
// Wait for an image and then retrieve it. A timeout of 5000 ms is used.
camera.RetrieveResult(5000, ptrGrabResult, TimeoutHandling_ThrowException);
// Image grabbed successfully?
if (ptrGrabResult->GrabSucceeded())
{
// Access the image data.
cout << "SizeX: " << ptrGrabResult->GetWidth() << endl;
cout << "SizeY: " << ptrGrabResult->GetHeight() << endl;
const uint8_t *pImageBuffer = (uint8_t *)ptrGrabResult->GetBuffer();
cout << "Gray value of first pixel: " << (uint32_t)pImageBuffer[0] << endl << endl;
//#ifdef PYLON_WIN_BUILD
// Display the grabbed image.
//Pylon::DisplayImage(1, ptrGrabResult);
//#endif
///convert to cv::Mat
formatConverter.Convert(pylonImage, ptrGrabResult);
frame = cv::Mat(ptrGrabResult->GetHeight(), ptrGrabResult->GetWidth(), CV_8UC3, (uint8_t *)pylonImage.GetBuffer());
/// show
//resize(frame, frame, Size(frame.cols / 2, frame.rows / 2));
cout << frame.size() << endl;
imshow("OpenCV Display Window", frame);
if(true)
{
Mat view(194, 259, frame.type());
resize(frame, view, view.size(), 0, 0, INTER_LINEAR);
//*****************************************************************************8
std::vector<KeyPoint> keypoints;
keypoints.resize(500);
Mat descriptors;
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
//Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create ( "BruteForce-Hamming" );
cout << view.size << endl;
detector->detect(view, keypoints);
descriptor->compute(view, keypoints, descriptors);
Mat outimg;
calibrate_keypoints.push_back(keypoints);
calibrate_descriptors.push_back(descriptors);
drawKeypoints(view, keypoints, outimg, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
//imshow("ORB特征点",outimg);
//imshow("input", view);
//cv::waitKey(10000);
calibrate_images.push_back(view);
if (cnt >= 1) {
//the first 15 images will be used calidate.
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
vector<DMatch> matches;
Mat img_match;
//BFMatcher matcher ( NORM_HAMMING );
matcher->match(calibrate_descriptors[cnt - 1], calibrate_descriptors[cnt], matches);
//optimize
double min_dist = 10000, max_dist = 0;
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for (int i = 0; i < calibrate_descriptors[cnt - 1].rows; i++)
{
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
std::vector< DMatch > good_matches;
for (int i = 0; i < calibrate_descriptors[cnt - 1].rows; i++)
{
if (matches[i].distance <= max(2 * min_dist, 30.0))
{
good_matches.push_back(matches[i]);
}
}
drawMatches(calibrate_images[cnt - 1], calibrate_keypoints[cnt - 1], calibrate_images[cnt], calibrate_keypoints[cnt], good_matches, img_match);
//imshow("ORB特征点2",img_match);
//calibrate here
//**********************************************//
vector<Point2f> imagePoints1, imagePoints2;
for (int i = 0; i < good_matches.size(); i++)
{
imagePoints2.push_back(calibrate_keypoints[cnt - 1][good_matches[i].queryIdx].pt);
imagePoints1.push_back(calibrate_keypoints[cnt][good_matches[i].trainIdx].pt);
}
Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
if (cnt == 1) save_homo = homo.clone();
else save_homo = save_homo * homo;
homo = save_homo;
// cout<<homo<<endl;
Mat imageTransform;
warpPerspective(calibrate_images[cnt], imageTransform, homo, Size(calibrate_images[cnt].cols + 1000, calibrate_images[cnt].rows + 50));
//imshow("直接经过透视矩阵变换", imageTransform);
//imwrite("trans1.jpg", imageTransform);
int dst_width = imageTransform.cols; //取最右点的长度为拼接图的长度
int dst_height = calibrate_images[cnt].rows;
Mat tem_dst(194 + 50, 259 * 10, CV_8UC3); tem_dst.setTo(0);
imageTransform.copyTo(tem_dst(Rect(0, 0, imageTransform.cols, imageTransform.rows)));
Mat tem_dst2 = dst.clone();
//calibrate_images[cnt].copyTo(dst(Rect(0, 0, calibrate_images[cnt].cols, calibrate_images[cnt].rows)));
max(tem_dst, tem_dst2, dst);
/*for (int j = 0; j < tem_dst.rows; j++) {
for (int k = 0; k < tem_dst.cols; k++) {
for (int m = 0; m < 3; m++) {
if (tem_dst.at<Vec3b>(j, k)[m] <= 10) {
dst.at<Vec3b>(j, k)[m] = max(tem_dst2.at<Vec3b>(j, k)[m], tem_dst.at<Vec3b>(j, k)[m]);
}
else {
dst.at<Vec3b>(j, k)[m] = tem_dst2.at<Vec3b>(j, k)[m]*0.3+ tem_dst.at<Vec3b>(j, k)[m]*0.7;
}
}
// cout<< tem_dst.at
//if(tem_dst.at)
}
}
*/
//max(tem_dst,0)
//cout << dst << endl;
//addWeighted(tem_dst, 0.3,tem_dst2,0.7, 0, dst);
imshow("b_dst", dst);
}
}
cnt++;
//******************************************************************************
}
else
{
cout << "Error: " << ptrGrabResult->GetErrorCode() << " " << ptrGrabResult->GetErrorDescription() << endl;
}
}
}
catch (const GenericException &e)
{
// Error handling.
cerr << "An exception occurred." << endl
<< e.GetDescription() << endl;
exitCode = 1;
}
// Comment the following two lines to disable waiting on exit.
cerr << endl << "Press Enter to exit." << endl;
while (cin.get() != '\n');
// Releases all pylon resources.
PylonTerminate();
return exitCode;
}
3结果
4.硬件部分
还在搭建中