POJ 3624 Charm Bracelet

本文介绍了一种使用一维动态规划(DP)方法解决背包问题的经典案例。通过对题目要求的解析,展示了如何在给定重量限制下选择一系列具有特定权重和价值的装饰品以达到最高的总价值。同时对比了一维DP与二维DP在内存使用上的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Charm Bracelet
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 31350 Accepted: 13943

Description

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from theN (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weightWi (1 ≤ Wi ≤ 400), a 'desirability' factorDi (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more thanM (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers:Wi and Di

Output

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input

4 6
1 4
2 6
3 12
2 7

Sample Output

23

Source



简单O1背包水题,温习一下,瞬秒。

此题智能用一维DP数组,二维妥妥超内存。


一维AC


#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;

const int MAXN=3405;
const int MAXM=12885;
int dp[MAXM];
int weight[MAXN];
int value[MAXN];

int main()
{
        int n,m;
        while(scanf("%d%d",&n,&m)>0)
        {
                memset(dp,0,sizeof(dp));
                for(int i=1;i<=n;i++)
                        scanf("%d%d",&weight[i],&value[i]);
                for(int i=1;i<=n;i++)
                        for(int j=m;j>=weight[i];j--)
                                dp[j]=max(dp[j-weight[i]]+value[i],dp[j]);
                printf("%d\n",dp[m]);
        }
        return 0;
}

二维数组,方法正确,但此题会超内存


#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;

const int MAXN=3405;
const int MAXM=12885;
int dp[MAXN][MAXM];
int weight[MAXN];
int value[MAXN];

int main()
{
        int n,m;
        while(scanf("%d%d",&n,&m)>0)
        {
                memset(dp,0,sizeof(dp));
                for(int i=1;i<=n;i++)
                        scanf("%d%d",&weight[i],&value[i]);
                for(int i=1;i<=n;i++)
                        for(int j=1;j<=m;j++)
                        {
                                dp[i][j]=dp[i-1][j];
                                if(j>=weight[i])
                                        dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);
                        }
                printf("%d\n",dp[n][m]);
        }
        return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值