POJ 1651 Multiplication Puzzle

本文介绍了一道典型的动态规划题目,通过将大区间不断分割成子区间,利用状态转移方程来求解移除数列中指定位置的数时能得到的最小累积得分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A - Multiplication Puzzle
Time Limit:1000MS    Memory Limit:65536KB    64bit IO Format:%I64d & %I64u

Description

The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row.

The goal is to take cards in such order as to minimize the total number of scored points.

For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring
10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000

If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be
1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.

Input

The first line of the input contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.

Output

Output must contain a single integer - the minimal score.

Sample Input

6
10 1 50 50 20 5

Sample Output

3650


区间DP。

题目的意思是,给一数序列。头尾不能移除,其他的数里,每移除一个数,将它左右的数和它自己相乘,得到一个值。最后累加这个值,求最小值。

典型的动态规划题目。

方法是把大区间【1,n】分成子区间。用[i,j]表示子区间。

那么可以得到状态转移方程。

 dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]);

k为[i,j]中子区间分隔,

i<k<j;

将[i,j]区间不断的分成子区间[i,k]和[k,j]求最小值。

最后dp[1][n]
即为整个区间的最小值。


#include <stdio.h>
#include <string.h>
#include <algorithm>
#define N 105
#define INF 0x3f3f3f3f
using namespace std;
int a[N];
int dp[N][N];
int main()
{
        int n;
        while(scanf("%d",&n)>0)
        {
                memset(dp,0,sizeof(dp));
                for(int i=1;i<=n;i++)
                        scanf("%d",&a[i]);
                for(int d=2;d<=n-1;d++)
                        for(int i=1;i+d<=n;i++)
                        {
                                int j=i+d;
                                dp[i][j]=INF;
                                for(int k=i+1;k<=j-1;k++)
                                        dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]);
                        }
                printf("%d\n",dp[1][n]);
        }
        return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值