算法---求两个数的最大公约数(递归)

本文介绍了一种使用递归算法来计算两个非负整数最大公约数的方法。通过实例解析递归的三个关键要素,并展示了如何实现递归算法以解决此类数学问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过这个例子,要考虑什么时候用递归。


	p和q的最大公约数即为q和r的最大公约数
这句话要能自己说出来,用上
	递归的三个要点:
	1.递归总有一个最简单的情况---方法的第一句总是一个包含return的条件语句
	2.递归调用总是去尝试解决一个规模更小的子问题,这样递归才能收敛到最简单的情况
	3.递归调用的父问题和尝试解决的子问题之间不应该有交集


public class Demo001 {

    //计算两个非负整数的最大公约数,p,q,如果其中一个是0则最大公约数是另外一个
    //否则将p除以q得到余数r,p和q的最大公约数即为q和r的最大公约数
    public static void main(String[] args) {
        System.out.println(gcd(912,45));

    }

    public static int gcd(int p, int q) {
        if (p == 0 || q == 0) {
            int max = Math.max(p, q);
            return max;
        }
        int r = p % q;
        //到这里都好理解,问题是最后一句话怎么办
        // p和q的最大公约数即为q和r的最大公约数
        return gcd(q, r);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值