Crossing Rivers UVA - 12230 概率与期望

本文详细解析了UVA-12230问题,即求解个人通过N条随机船速的河流到达公司的期望时间。讨论了过河时间的最小值和最大值,并给出了平均时间的计算公式,最终通过代码实现了问题的解决。

Crossing Rivers UVA - 12230 概率与期望

题目大意:
有个人每天要去公司上班,每次会经过N条河,家和公司的距离为D,默认在陆地的速度为1,
给出N条河的信息,包括起始坐标p,宽度L,以及船的速度v。船会往返在河的两岸,人到达河岸时,
船的位置是随机的(往返中)。问说人达到公司所需要的期望时间。

 


考虑每条河的过河时间: $t_{min} =\frac{L}{V}$,  $t_{max} =\frac{3L}{V}$

由于每种距离的概率都是相等的,我们可以认为时间的期望就是 $(t_{min}+t_{max})/2$.

Code:

#include<cstdio>
using namespace std;
int main(){
	//freopen("in.txt","r",stdin);
	int cas=0;
	while(1){
		double D;int n;
		scanf("%d%lf",&n,&D);
		double sum=D;
		if(D==0)break;
		for(int i=1;i<=n;++i){
			double p,l,v;scanf("%lf%lf%lf",&p,&l,&v);
			sum-=l;
			sum+=2.0*l/v;
		}
		printf("Case %d: %.3f\n\n",++cas,sum);
	}
	return 0;
}

  

posted @ 2019-06-06 17:49 EM-LGH 阅读( ...) 评论( ...) 编辑 收藏
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略效果评估体系,涵盖当前企业传播面临的预算、资源、内容效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放GEO优化,提升品牌在AI搜索中的权威性可见性;④通过数据驱动评估体系量化品牌影响力销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析工具指南进行系统学习,重点关注媒体适配性策略GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值