文件操作
有一个jsonline格式的文件file.txt大小约为10K
def get_lines():
with open('file.txt','rb') as f:
return f.readlines()
if __name__ == '__main__':
for e in get_lines():
process(e) # 处理每一行数据
现在要处理一个大小为10G的文件,但是内存只有4G,如果在只修改get_lines 函数而其他代码保持不变的情况下,应该如何实现?需要考虑的问题都有那些?
def get_lines():
with open('file.txt','rb') as f:
for i in f:
yield i
个人认为:还是设置下每次返回的行数较好,否则读取次数太多。
def get_lines():
l = []
with open('file.txt','rb') as f:
data = f.readlines(60000)
l.append(data)
yield l
要考虑的问题有:内存只有4G无法一次性读入10G文件,需要分批读入分批读入数据要记录每次读入数据的位置。分批每次读取数据的大小,太小会在读取操作花费过多时间。
from mmap import mmap
def get_lines(fp):
with open(fp,"r+") as f:
m = mmap(f.fileno(), 0)
tmp = 0
for i, char in enumerate(m):
if char==b"\n":
yield m[tmp:i+1].decode()
tmp = i+1
if __name__=="__main__":
for i in get_lines("fp_some_huge_file"):
print(i)
补充缺失的代码
def print_directory_contents(sPath):
"""
这个函数接收文件夹的名称作为输入参数
返回该文件夹中文件的路径
以及其包含文件夹中文件的路径
"""
import os
for s_child in os.listdir(s_path):
s_child_path = os.path.join(s_path, s_child)
if os.path.isdir(s_child_path):
print_directory_contents(s_child_path)
else:
print(s_child_path)
本文探讨了如何在有限的内存条件下处理超大文件的方法,提出了使用生成器、分批读取和内存映射等策略,避免一次性加载整个文件,从而有效解决大文件处理难题。
——文件操作&spm=1001.2101.3001.5002&articleId=103553609&d=1&t=3&u=f0d7bed15bc74ce6bdc4a41331d1d103)
51万+

被折叠的 条评论
为什么被折叠?



