还是子网掩码

本文解释了IP地址的工作原理,包括子网划分的概念及其在网络路由中的作用。详细介绍了CIDR表示方法及子网掩码的使用,并阐述了链路子网如何影响数据包的直接访问。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

刚好解答了今天前辈讲解过程中我产生的问题。

原文链接http://www.zhihu.com/question/20717354

知乎是个好东西啊~~~

 

 

 

网络模型被OSI分成七层,TCP/IP协议大致对应了2、3、4、7层,分别是数据链路层、网络层、传输层、应用层,IP协议处于网络层上,它的工作原理说白了并不复杂:

  1. 整个互联网上所有的机器都有唯一一个IP地址对应。这并没有什么稀奇的,MAC地址也是唯一的,稀奇的在后面
  2. 机器的IP地址按照连接顺序进行了一定程度的分组,这样一个连续的IP段大致都在相同的路线上,这样路由器寻找特定IP地址的时候就方便多了,把整个地址空间分成若干个可能重叠的大段,每个大段一般这样表示:A.B.C.D/n,表示32位IP地址的前n位与A.B.C.D的前n位相同。比如192.168.1.0/24,所有前24位与192.168.1.0相同的都是这个网段的IP,由于IP地址8位一分组,24位就是前三段,也就是192.168.1.x。符合规范的这段连续的IP段就叫做一个子网。这种子网的表示方法叫做CIDR。
  3. 这种表示方法对人来说比较直观,但是计算机有另一种更快速的计算方法,对于A.B.C.D/n,我们构造一个前n位都是1、后面其他位都是0的IP地址,这个32位IP地址和A.B.C.D按位与的结果,就是前n位与A.B.C.D相同而后面其他位都是0的IP地址;如果这个32位IP地址和另一个IP地址与的结果,刚好与A.B.C.D与的结果相等,就说明这个IP地址和A.B.C.D的前n位相等,就说明新IP地址在CIDR范围内。我们把前n位都是1、后面其他位是0的地址也用IP地址的形式表示出来,那么192.168.1.0/24对应的就是255.255.255.0,这个就叫做子网掩码,掩码也就是mask,mask在计算机用语当中表示按位与的操作数,用来从目标数中取出特定的二进制位。也就是说IP+子网掩码是CIDR的另一种表示形式。


对于任意一台计算机或者路由器来说,它首先会有一些本地的链路,这些链路的IP地址都在各自特定的CIDR当中,这个子网叫做链路子网,链路子网中的IP地址都可以通过链路层协议直接访问,具体的访问方法与IP协议无关,在以太网当中是靠ARP,但是如果是WLAN,或者令牌环网,或者PPPoE,又会有所不同。比如子网是192.168.1.0/24,那么范围内所有IP地址都会直接调用链路层协议访问。表现在路由表中,就是这样一项:

192.168.1.0/24 -> link local, ifindex = XXX

即“192.168.1.0/24范围的IP通过XXX网卡的链路层协议直接访问”

如果还有其他链路,也会有相应的表项,比如说还有一个网卡上面的链路子网是111.222.1.0/24,那么就有另一项:

111.222.1.0/24 -> link local, ifindex = YYY

特别的,每个网卡上都会有一个IP地址,是本机的IP地址。当数据包发到这个IP地址的时候,设备就会正确理解“这个数据包是发给我自己的”,否则会理解为“这个数据包需要我代为转发”。这些本机的IP地址一定在链路层子网当中,比如说192.168.1.0/24中本机的IP地址是192.168.1.1,111.222.1.0/24中的IP地址是111.222.1.15,那么就有两个表项:

192.168.1.1/32 -> local

111.222.1.15/32 -> local

到local表示交给本机的更高层的协议栈,比如TCP/UDP去处理。否则会转发到其他机器。

我们注意到这些表项和刚才的表项有重叠的部分,比如说192.168.1.1/32其实包含在192.168.1.0/24里面。路由表的不同表项有不同的优先级,子网越小的越优先,也就是后面n越大的越优先,这样192.168.1.1/32就比192.168.1.0/24优先。

电动汽车数据集:2025年3K+记录 真实电动汽车数据:特斯拉、宝马、日产车型,含2025年电池规格和销售数据 关于数据集 电动汽车数据集 这个合成数据集包含许多品牌和年份的电动汽车和插电式车型的记录,捕捉技术规格、性能、定价、制造来源、销售和安全相关属性。每一行代表由vehicle_ID标识的唯一车辆列表。 关键特性 覆盖范围:全球制造商和车型组合,包括纯电动汽车和插电式混合动力汽车。 范围:电池化学成分、容量、续航里程、充电标准和速度、价格、产地、自主水平、排放、安全等级、销售和保修。 时间跨度:模型跨度多年(包括传统和即将推出的)。 数据质量说明: 某些行可能缺少某些字段(空白)。 几个分类字段包含不同的、特定于供应商的值(例如,Charging_Type、Battery_Type)。 各列中的单位混合在一起;注意kWh、km、hr、USD、g/km和额定值。 列 列类型描述示例 Vehicle_ID整数每个车辆记录的唯一标识符。1 制造商分类汽车品牌或OEM。特斯拉 型号类别特定型号名称/变体。型号Y 与记录关联的年份整数模型。2024 电池_类型分类使用的电池化学/技术。磷酸铁锂 Battery_Capacity_kWh浮充电池标称容量,单位为千瓦时。75.0 Range_km整数表示充满电后的行驶里程(公里)。505 充电类型主要充电接口或功能。CCS、NACS、CHAdeMO、DCFC、V2G、V2H、V2L Charge_Time_hr浮动充电的大致时间(小时),上下文因充电方法而异。7.5 价格_USD浮动参考车辆价格(美元).85000.00 颜色类别主要外观颜色或饰面。午夜黑 制造国_制造类别车辆制造/组装的国家。美国 Autonomous_Level浮点自动化能力级别(例如0-5),可能包括子级别的小
内容概要:本文详细介绍了IEEE论文《Predefined-Time Sensorless Admittance Tracking Control for Teleoperation Systems With Error Constraint and Personalized Compliant Performance》的复现与分析。论文提出了一种预定义时间的无传感器导纳跟踪控制方案,适用于存在模型不确定性的遥操作系统。该方案通过具有可调刚度参数的导纳结构和预定义时间观测器(PTO),结合非奇异预定义时间终端滑模流形和预定义时间性能函数,实现了快速准确的导纳轨迹跟踪,并确保误差约束。文中详细展示了系统参数定义、EMG信号处理、预定义时间观测器、预定义时间控制器、可调刚度导纳模型及主仿真系统的代码实现。此外,还增加了动态刚度调节器、改进的广义动量观测器和安全约束模块,以增强系统的鲁棒性和安全性。 适合人群:具备一定自动化控制理论基础和编程能力的研究人员、工程师,尤其是从事机器人遥操作、人机交互等领域工作的专业人士。 使用场景及目标:①理解预定义时间控制理论及其在遥操作系统中的应用;②掌握无传感器力观测技术,减少系统复杂度;③学习如何利用肌电信号实现个性化顺应性能调整;④探索如何在保证误差约束的前提下提高系统的响应速度和精度。 阅读建议:本文内容涉及较多的数学推导和技术细节,建议读者先熟悉基本的控制理论和Python编程,重点理解各个模块的功能和相互关系。同时,可以通过运行提供的代码示例,加深对理论概念的理解,并根据自身需求调整参数进行实验验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值