Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm’s runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].
public class Solution {
public int findLeft(int[] nums, int target) {
int low = 0;
int high = nums.length - 1;
while(low <= high) {
int mid = (low + high) / 2;
if(nums[mid] < target)
low = mid + 1;
else
high = mid - 1;
}
/* need to check the low's index, low will be less than the 0 */
if(low >= 0 && low < nums.length && nums[low] == target)
return low;
else
return -1;
}
public int findRight(int[] nums, int target) {
int low = 0;
int high = nums.length - 1;
while(low <= high) {
int mid = (low + high) / 2;
if(nums[mid] <= target)
low = mid + 1;
else
high = mid - 1;
}
if(high >= 0 && high < nums.length && nums[high] == target)
return high;
else
return -1;
}
public int[] searchRange(int[] nums, int target) {
int res[] = new int[2];
res[0] = findLeft(nums, target);
res[1] = findRight(nums, target);
return res;
}
}
本文介绍了一种算法,可以在已排序的整数数组中找到给定目标值的起始和结束位置,该算法的时间复杂度为O(logn)。如果未找到目标值,则返回[-1,-1]。例如,在数组[5,7,7,8,8,10]中查找8,将返回[3,4]。
3241

被折叠的 条评论
为什么被折叠?



