http://leetcode.com/onlinejudge#question_51
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
class Solution {
public:
bool check(int row, int* place)
{
for(int i=0;i<row;i++)
{
int diff = abs(place[row]-place[i]);
if(diff == 0 || diff == row - i) return false;
}
return true;
}
void placeQueens(int row, int n, int &count, int* place,
vector<vector<string> > &result)
{
if(row==n)
//indicates success
{
vector<string> tmp;
count++;
for(int i=0;i<n;i++)
{
string str(n,'.');
str[place[i]] = 'Q';
tmp.push_back(str);
}
result.push_back(tmp);
return;
}
for(int i=0;i<n;i++)
{
place[row] = i;
if(check(row,place))
{
placeQueens(row+1,n,count,place,result);
}
}
}
int totalNQueens(int n) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
vector<vector<string> > result;
int count = 0;
int* place = new int[n];
placeQueens(0,n,count,place,result);
return count;
}
};