Codility-MaxProfit

本文介绍了一种计算给定时间段内股票交易最大可能利润的算法。通过一次遍历数组,找到买入和卖出的最佳时机,实现O(N)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Task description

A zero-indexed array A consisting of N integers is given. It contains daily prices of a stock share for a period of N consecutive days. If a single share was bought on day P and sold on day Q, where 0 ≤ P ≤ Q < N, then the profit of such transaction is equal to A[Q] − A[P], provided that A[Q] ≥ A[P]. Otherwise, the transaction brings loss of A[P] − A[Q].

For example, consider the following array A consisting of six elements such that:

  A[0] = 23171  
  A[1] = 21011  
  A[2] = 21123
  A[3] = 21366  
  A[4] = 21013  
  A[5] = 21367

If a share was bought on day 0 and sold on day 2, a loss of 2048 would occur because A[2] − A[0] = 21123 − 23171 = −2048. If a share was bought on day 4 and sold on day 5, a profit of 354 would occur because A[5] − A[4] = 21367 − 21013 = 354. Maximum possible profit was 356. It would occur if a share was bought on day 1 and sold on day 5.

Write a function,

int solution(const vector<int> &A);

that, given a zero-indexed array A consisting of N integers containing daily prices of a stock share for a period of N consecutive days, returns the maximum possible profit from one transaction during this period. The function should return 0 if it was impossible to gain any profit.

For example, given array A consisting of six elements such that:

  A[0] = 23171  
  A[1] = 21011  
  A[2] = 21123
  A[3] = 21366  
  A[4] = 21013  
  A[5] = 21367

the function should return 356, as explained above.

Assume that:

  • N is an integer within the range [0..400,000];
  • each element of array A is an integer within the range [0..200,000].

Complexity:

  • expected worst-case time complexity is O(N);
  • expected worst-case space complexity is O(1), beyond input storage (not counting the storage required for input arguments).

Elements of input arrays can be modified.

此题事实上就是给定一个数组A[0]...A[n-1],求最大的profit=A[q]-A[p],其中0<=p<q<n。若数组为空或profit为负值则返回0。

很容易想到O(n^2)的暴力解法。事实上,对于A[q]-A[p],若给定q,则其最大值在A[p]最小处取得。令max_ending表示给定q值时profit的最大值(用tmp表示A[p]的最小值),则对q从1~n-1进行一次遍历,在遍历时,若max_ending的值比原来profit值更大,则将profit更新为max_ending,否则不变。这样,一次遍历下来profit就更新为A[q]-A[p]的最大值了。

// you can use includes, for example:
 #include 

// you can write to stdout for debugging purposes, e.g.
// cout << "this is a debug message" << endl;

int solution(const vector &A) {
    // write your code in C++11
    if(A.empty())
    {
        return 0;
    }
    int profit = 0;
    int tmp = A[0];
    int max_ending = 0;
    for(unsigned int i=1;iA[i])
        {
            tmp = A[i];
        }
    }
    return profit;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值