题目概述
按顺时针序给定一个简单N边形每个顶点的坐标x,y,问其是否存在核
所有边都与x轴或y轴平行
时限
1000ms/3000ms
输入
第一行正整数N,其后N行,每行两个整数x,y,输入到N=0结束
限制
4<=N<=100
输出
每组数据输出在两行中,第一行
Floor #A
其中A为数据序数,从1开始,第二行若存在核,则为
Surveillance is possible.
否则为
Surveillance is impossible.
两组输出中间带一个空行
样例输入
4
0 0
0 1
1 1
1 0
8
0 0
0 2
1 2
1 1
2 1
2 2
3 2
3 0
0
样例输出
Floor #1
Surveillance is possible.Floor #2
Surveillance is impossible.
讨论
计算几何,半平面交,和poj 3130,poj 3335没什么差别,连着做了三道几乎一样的,只要思路理解,实现都写对(是的,额每次都会删掉fun函数重新写),再做多少遍也不过是模版题(并没有抄也并没有模版)和水题
同样的问题也需要说三遍,点不应当使用两个int型,实际上到下一个题poj 1279时被WA了才意识到这一点,因为那个不是问存在性了,而是求面积
题解状态
160K,0MS,C++,2299B
题解代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define INF 0x3f3f3f3f
#define MAXN 103
#define memset0(a) memset(a,0,sizeof(a))
#define EPS 1e-6
struct Pt//点的结构
{
double x, y;//这里已经改过来了
}pts[MAXN], pt1[MAXN], pt2[MAXN];
int hpt1, hpt2;
int N, times;//点的数量 控制Floor输出
bool f;//控制空行输出
double xp(double x1, double y1, double x2, double y2, double x3, double y3)
{
return (x1 - x2)*(y3 - y2) - (y1 - y2)*(x3 - x2);
}
Pt point_of_intersection(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4)
{
Pt poi;
if (abs(x1 - x2) < EPS) {
double k3 = (y4 - y3) / (x4 - x3);
poi.x = x1, poi.y = y3 - k3*x3 + k3*x1;
}
else if (abs(x3 - x4) < EPS) {
double k1 = (y2 - y1) / (x2 - x1);
poi.x = x3, poi.y = y1 - k1*x1 + k1*x3;
}
else {
double k1 = (y2 - y1) / (x2 - x1);
double k3 = (y4 - y3) / (x4 - x3);
poi.x = (y1 - y3 - k1*x1 + k3*x3) / (k3 - k1);
poi.y = (k1*k3*(x1 - x3) - k3*y1 + k1*y3) / (k1 - k3);
}
return poi;
}
void fun()
{
for (int p = 0; p < N; p++) {
scanf("%lf%lf", &pts[p].x, &pts[p].y);//input
pt1[p] = pts[p];
}
hpt1 = N;
for (int p = 0; p < N; p++) {
hpt2 = 0;
for (int i = 0; i < hpt1; i++) {
if (xp(pt1[i].x, pt1[i].y, pts[p].x, pts[p].y, pts[(p + 1) % N].x, pts[(p + 1) % N].y) >= 0)
pt2[hpt2++] = pt1[i];
else {
if (xp(pt1[(i - 1 + hpt1) % hpt1].x, pt1[(i - 1 + hpt1) % hpt1].y, pts[p].x, pts[p].y, pts[(p + 1) % N].x, pts[(p + 1) % N].y)>0)
pt2[hpt2++] = point_of_intersection(pt1[i].x, pt1[i].y, pt1[(i - 1 + hpt1) % hpt1].x, pt1[(i - 1 + hpt1) % hpt1].y, pts[p].x, pts[p].y, pts[(p + 1) % N].x, pts[(p + 1) % N].y);
if (xp(pt1[(i + 1) % hpt1].x, pt1[(i + 1) % hpt1].y, pts[p].x, pts[p].y, pts[(p + 1) % N].x, pts[(p + 1) % N].y)>0)
pt2[hpt2++] = point_of_intersection(pt1[i].x, pt1[i].y, pt1[(i + 1) % hpt1].x, pt1[(i + 1) % hpt1].y, pts[p].x, pts[p].y, pts[(p + 1) % N].x, pts[(p + 1) % N].y);
}
}
for (int p = 0; p < hpt2; p++)
pt1[p] = pt2[p];
hpt1 = hpt2;
}
if (f)
printf("\n");//output
if (hpt1)
printf("Floor #%d\nSurveillance is possible.\n", ++times);//output
else
printf("Floor #%d\nSurveillance is impossible.\n", ++times);//output
f = 1;
}
int main(void)
{
//freopen("vs_cin.txt", "r", stdin);
//freopen("vs_cout.txt", "w", stdout);
while (~scanf("%d", &N) && N)//input
fun();
}
EOF